Skip to main content
Log in

Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y.M. Zhang, M. Hida, A. Sakakibara, and Y. Takemoto, Influence of WC Addition on Microstructures of Laser-Melted Ni-Based Alloy Coating, J. Mater. Eng. Perform., 2002, 11(6), p 667–674

    Article  Google Scholar 

  2. A. Wang, C. Fan, C. Xie, W. Huang, and K. Cui, Laser Cladding of Iron-Base Alloy on Al-Si Alloy and Its Relation to Cracking at the Interface, J. Mater. Eng. Perform., 1996, 5(6), p 775–783

    Article  Google Scholar 

  3. J.S. Selvan, G. Soundararajan, and K. Subramanian, Laser Alloying of Aluminium with Electrodeposited Nickel: Optimisation of Plating Thickness and Processing Parameters, Surf. Coat. Technol., 2000, 124(2-3), p 117–127

    Article  Google Scholar 

  4. S. Tomida, K. Nakata, S. Saji, and T. Kubo, Formation of Metal Matrix Composite Layer on Aluminum Alloy with Tic-Cu Powder by Laser Surface Alloying Process, Surf. Coat. Technol., 2001, 142-144, p 585–589

    Article  Google Scholar 

  5. S. Tomida and K. Nakata, Fe-Al Composite Layers on Aluminum Alloy Formed by Laser Surface Alloying with Iron Powder, Surf. Coat. Technol., 2003, 174-175, p 559–563

    Article  Google Scholar 

  6. R.S. Rajamure, H.D. Vora, N. Gupta, S. Karewar, S.G. Srinivasan, and N.B. Dahotre, Laser Surface Alloying of Molybdenum on Aluminum for Enhanced Wear Resistance, Surf. Coat. Technol., 2014, 258, p 337–342

    Article  Google Scholar 

  7. A. Almeida, P. Petrov, I. Nogueira, and R. Vilar, Structure and Properties of Al-Nb Alloys Produced by Laser Surface Alloying, Mater. Sci. Eng., A, 2001, 303(1-2), p 273–280

    Article  Google Scholar 

  8. S. Ignat, P. Sallamand, D. Grevey, and M. Lambertin, Magnesium Alloys Laser (Nd: YAG) Cladding and Alloying with Side Injection of Aluminium Powder, Appl. Surf. Sci., 2004, 225(1-4), p 124–134

    Article  Google Scholar 

  9. M. Zhong and W. Liu, Laser Surface Cladding: The State of the Art and Challenges, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2010, 224, p 1041–1060

    Article  Google Scholar 

  10. W.U.H. Syed and L. Li, Effects of Wire Feeding Direction and Location in Multiple Layer Diode Laser Direct Metal Deposition, Appl. Surf. Sci., 2005, 248(1-4), p 518–524

    Article  Google Scholar 

  11. J.-D. Kim and Y. Peng, Melt Pool Shape and Dilution of Laser Cladding with Wire Feeding, J. Mater. Process. Technol., 2000, 104(3), p 284–293

    Article  Google Scholar 

  12. L. Dubourg, H. Pelletier, D. Vaissiere, F. Hlawka, and A. Cornet, Mechanical Characterisation of Laser Surface Alloyed Aluminium-Copper Systems, Wear, 2002, 253(9-10), p 1077–1085

    Article  Google Scholar 

  13. L. Dubourg, F. Hlawka, and A. Cornet, Study of Aluminium-Copper-Iron Alloys: Application for Laser Cladding, Surf. Coat. Technol., 2002, 151-152, p 329–332

    Article  Google Scholar 

  14. M.A. Pinto, N. Cheung, M.C.F. Ierardi, and A. Garcia, Microstructural and Hardness Investigation of an Aluminum-Copper Alloy Processed by Laser Surface Melting, Mater. Charact., 2003, 50(2-3), p 249–253

    Article  Google Scholar 

  15. A.P.I. Popoola, S.L. Pityana, and O.M. Popoola, Laser Deposition of (Cu + Mo) Alloying Reinforcements on Al1200 Substrate for Corrosion Improvement, Int. J. Electrochem. Sci., 2011, 6, p 5038–5051

    Google Scholar 

  16. S.W. Chen and C.C. Huang, Solidification Curves of AlCu, AlMg and AlCuMg Alloys, Acta Mater., 1996, 44(5), p 1955–1965

    Article  Google Scholar 

  17. B.V. Zlatičanin, S. Đurić, B.M. Jordović, and B. Radonjić, Characterization of Microstructure and Properties of AlCuMg Alloys, J. Min. Metall. Sect. B Metall., 2003, 39(3-4), p 509–526

    Article  Google Scholar 

  18. J.G. Kaufman, Aluminum Alloys, Mechanical Engineers Handbook, Materials Mechanical Design, 3rd ed., M. Kutz, Ed., Wiley, New York, 2006, p 59–116

    Chapter  Google Scholar 

  19. S. Nam and D. Lee, The Effect of Mn on the Mechanical Behavior of Al Alloys, Met. Mater., 2000, 6(1), p 13–16

    Article  Google Scholar 

  20. R. Modlinski, R. Puers, and I. De Wolf, AlCuMgMn Micro-Tensile Samples: Mechanical Characterization of MEMS Materials at Micro-Scale, Sens. Actuators, A, 2008, 143(1), p 120–128

    Article  Google Scholar 

  21. L.A. Dobrzański, M. Piec, and A. Klimpel, Improvement of the Hot Work Tool Steel Surface Layers Properties Using a High Power Diode Laser, J. Achiev. Mater. Manuf. Eng., 2007, 21(1), p 13–22

    Google Scholar 

  22. L.A. Dobrzański, K. Labisz, E. Jonda, and A. Klimpel, Comparison of the Surface Alloying of the 32CrMoV12-28 Tool Steel Using TiC and WC Powder, J. Mater. Process. Technol., 2007, 191(1), p 321–325

    Article  Google Scholar 

  23. K. Labisz, Microstructure and Mechanical Properties of High Power Diode Laser (HPDL) Treated Cast Aluminium Alloys, Materialwiss. Werkstofftech., 2014, 45(4), p 314–324

    Article  Google Scholar 

  24. A.S.T.M. E8/E8 M Standard, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2009. doi:10.1520/E0008-E0008M-09. www.astm.org.

  25. ASTM-G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals. Annual Book of ASTM Standards, American Society for Testing and Materials, Philadephia, PA, USA, 2004

  26. M.F. Schneider, “Laser Cladding with Powder: Effect of Some Machining Parameters on Clad Properties. Ph.D. Thesis, University of Twente, Enschede, Netherlands, 1998, p 181.

  27. T.M. Yue and T. Li, Solidification Behaviour and the Evolution of Microstructure in the Laser Cladding of Aluminium on Magnesium Substrate, Mater. Trans., JIM, 2007, 48(5), p 1064–1069

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the facilities procured under Department of Science and Technology FIST Project Number: SR/FST/ETI-244/2008. The authors also acknowledge their access to XRD Xpert facility procured under Ministry of Steels sponsored Project Number ME/P/SKJ/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday S. Dixit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiru, W.G., Sankar, M.R. & Dixit, U.S. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate. J. of Materi Eng and Perform 25, 1172–1181 (2016). https://doi.org/10.1007/s11665-016-1922-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1922-x

Keywords

Navigation