Advertisement

Journal of Materials Engineering and Performance

, Volume 25, Issue 8, pp 3303–3309 | Cite as

Observation of Pseudopartial Grain Boundary Wetting in the NdFeB-Based Alloy

  • B. B. StraumalEmail author
  • A. A. Mazilkin
  • S. G. Protasova
  • G. Schütz
  • A. B. Straumal
  • B. Baretzky
Article

Abstract

The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain the 2-4-nm-thin uniform Nd-rich layer.

Keywords

grain boundaries hard magnetic materials phase transitions wetting 

Notes

Acknowledgments

This work was performed under the partial financial support of Russian Foundation for Basic Research (Grants 14-42-03621, 15-03-01127, and 15-53-06008), Israeli Ministry of Science, Technology and Space, and Karlsruhe Nano Micro Facility operated by the by the Karlsruhe Institute of Technology.

References

  1. 1.
    B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, and B. Baretzky, Grain-Boundary Induced High T c-Ferromagnetism in Pure and Doped Nanocrystalline ZnO, Phys. Rev. B, 2009, 79, p 205206CrossRefGoogle Scholar
  2. 2.
    B. Zhao, G. Gottstein, and L.S. Shvindlerman, Triple Junction Effects in Solids, Acta Mater., 2011, 59, p 3510–3518CrossRefGoogle Scholar
  3. 3.
    J.G. Dash, H. Fu, and J.S. Wettlaufer, The Premelting of Ice and Its Environmental Consequences, Rep. Prog. Phys., 1995, 58, p 115–167CrossRefGoogle Scholar
  4. 4.
    P. Bueno, J. Varela, and E. Longo, SnO2, ZnO and Related Polycrystalline Compound Semiconductors, An Overview and Review on the Voltage-Dependent Resistance (Non-Ohmic) Feature, J. Eur. Ceram. Soc., 2008, 28, p 505–529CrossRefGoogle Scholar
  5. 5.
    J. Luo, Y.M. Chiang, and R.M. Cannon, Nanometer-Thick Surficial Films in Oxides as a Case of Prewetting, Langmuir, 2005, 21, p 7358–7365CrossRefGoogle Scholar
  6. 6.
    J. Luo, M. Tang, R.M. Cannon, W.C. Carter, and Y.M. Chiang, Pressure-Balance and Diffuse-Interface Models for Surficial Amorphous Films, Mater. Sci. Eng. A, 2006, 422, p 19–28CrossRefGoogle Scholar
  7. 7.
    D.R. Clarke, On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials, J. Am. Ceram. Soc., 1987, 70, p 15–22CrossRefGoogle Scholar
  8. 8.
    J. Luo, Stabilization of Nanoscale Quasi-Liquid Interfacial Films in Inorganic Materials: A Review and Critical Assessment, Crit. Rev. Solid State Mater. Sci., 2007, 32, p 67–109CrossRefGoogle Scholar
  9. 9.
    J. Luo and Y.M. Chiang, Wetting and Prewetting on Ceramic Surfaces, Ann. Rev. Mater. Res., 2008, 38, p 227–249CrossRefGoogle Scholar
  10. 10.
    A. Subramaniam, C. Koch, R.M. Cannon, and M. Rühle, Intergranular Glassy Films: An Overview, Mater. Sci. Eng. A, 2006, 422, p 3–18CrossRefGoogle Scholar
  11. 11.
    I. Maclaren, Imaging and Thickness Measurement of Amorphous Intergranular Films Using TEM, Ultramicroscopy, 2004, 99, p 103–113CrossRefGoogle Scholar
  12. 12.
    S.J. Dillon, M. Tang, W. Craig Carter, and M.P. Harmer, Complexion: A New Concept for Kinetic Engineering in Materials Science, Acta. Mater., 2007, 55, p 6208–6218CrossRefGoogle Scholar
  13. 13.
    M.P. Harmer, Interfacial Kinetic Engineering: How Far Have We Come Since Kingery’s Inaugural Sosman Address?, J. Am. Ceram. Soc., 2010, 93, p 301–317CrossRefGoogle Scholar
  14. 14.
    S.G. Protasova, B.B. Straumal, A.A. Mazilkin, S.V. Stakhanova, P.B. Straumal, and B. Baretzky, Increase of Fe Solubility in ZnO Induced by the Grain Boundary Adsorption, J. Mater. Sci., 2014, 49, p 4490–4498CrossRefGoogle Scholar
  15. 15.
    Th Tietze, P. Audehm, Y.C. Chen, G. Schütz, B.B. Straumal, S.G. Protasova, A.A. Mazilkin, P.B. Straumal, Th Prokscha, H. Luetkens, Z. Salman, A. Suter, B. Baretzky, K. Fink, W. Wenzel, D. Danilov, and E. Goering, Interfacial Dominated Ferromagnetism in Nanograined ZnO: A μSR and DFT Study, Sci. Rep., 2015, 5, p 8871CrossRefGoogle Scholar
  16. 16.
    B.B. Straumal, A.A. Mazilkin, S.G. Protasova, S.V. Stakhanova, P.B. Straumal, M.F. Bulatov, G. Schütz, Th Tietze, E. Goering, and B. Baretzky, Grain Boundaries as a Source of Ferromagnetism and Increased Solubility of Ni in Nanograined ZnO, Rev. Adv. Mater. Sci., 2015, 41, p 61–71Google Scholar
  17. 17.
    B. Straumal, R. Valiev, O. Kogtenkova, P. Zieba, T. Czeppe, E. Bielanska, and M. Faryna, Thermal Evolution and Grain Boundary Phase Transformations in Severe Deformed Nanograined Al-Zn Alloys, Acta Mater., 2008, 56, p 6123–6131CrossRefGoogle Scholar
  18. 18.
    O.A. Kogtenkova, B.B. Straumal, S.G. Protasova, A.S. Gornakova, P. Zięba, and T. Czeppe, Effect of the Wetting of Grain Boundaries on the Formation of a Solid Solution in the Al-Zn System, JETP Lett., 2012, 96, p 380–384CrossRefGoogle Scholar
  19. 19.
    R.Z. Valiev, MYu Murashkin, and B.B. Straumal, Enhanced Ductility in Ultrafine-Grained Al Alloys Produced by SPD Techniques, Mater. Sci. Forum, 2009, 633–634, p 321–332CrossRefGoogle Scholar
  20. 20.
    R.Z. Valiev, M.Y. Murashkin, A. Kilmametov, B.B. Straumal, N.Q. Chinh, and T.G. Langdon, Unusual Super-Ductility at Room Temperature in an Ultrafine-Grained Aluminum Alloy, J. Mater. Sci., 2010, 45, p 4718–4724CrossRefGoogle Scholar
  21. 21.
    N.Q. Chinh, T. Csanádi, J. Gubicza, R.Z. Valiev, B.B. Straumal, and T.G. Langdon, The Effect of Grain-Boundary Sliding and Strain Rate Sensitivity on the Ductility of Ultrafine-Grained Materials, Mater. Sci. Forum, 2011, 667–669, p 677–682Google Scholar
  22. 22.
    N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, and T.G. Langdon, Strain Rate Sensitivity Studies in an Ultrafine-Grained Al-30 wt.% Zn Alloy Using Micro- and Nanoindentation, Mater. Sci. Eng. A, 2012, 543, p 117–120CrossRefGoogle Scholar
  23. 23.
    S. Rafaï, D. Bonn, E. Bertrand, and J. Meunier, Long-Range Critical Wetting, Observation of a Critical End Point, Phys. Rev. Lett., 2004, 92, p 245701CrossRefGoogle Scholar
  24. 24.
    B.B. Straumal, X. Sauvage, B. Baretzky, A.A. Mazilkin, and R.Z. Valiev, Grain Boundary Films in Al-Zn Alloys after High Pressure Torsion, Scripta Mater., 2014, 70, p 59–62CrossRefGoogle Scholar
  25. 25.
    B.B. Straumal, A.A. Mazilkin, X. Sauvage, R.Z. Valiev, A.B. Straumal, and A.M. Gusak, Pseudopartial Wetting of Grain Boundaries in Severely Deformed Al-Zn Alloys, Russ. J. Non-Ferrous Met., 2015, 56, p 44–51CrossRefGoogle Scholar
  26. 26.
    B.B. Straumal, I. Konyashin, B. Ries, A.B. Straumal, A.A. Mazilkin, K.I. Kolesnikova, A.M. Gusak, and B. Baretzky, Pseudopartial Wetting of WC/WC Grain Boundaries in Cemented Carbides, Mater. Lett., 2015, 147, p 105–108CrossRefGoogle Scholar
  27. 27.
    J.W. Cahn, Critical Point Wetting, J. Chem. Phys., 1977, 66, p 3667–3676CrossRefGoogle Scholar
  28. 28.
    C. Ebner and W.F. Saam, New Phase-Transition Phenomena in Thin Argon Films, Phys. Rev. Lett., 1977, 38, p 1486–1489CrossRefGoogle Scholar
  29. 29.
    B.B. Straumal, L.M. Klinger, and L.S. Shvindlerman, The Effect of Crystallographic Parameters of Interphase Boundaries on Their Surface Tension and Parameters of the Boundary Diffusion, Acta Metall., 1984, 32, p 1355–1364CrossRefGoogle Scholar
  30. 30.
    B.B. Straumal, S.A. Polyakov, and E.J. Mittemeijer, Temperature Influence on the Faceting of Σ3 and Σ9 Grain Boundaries in Cu, Acta Mater., 2006, 54, p 167–172CrossRefGoogle Scholar
  31. 31.
    J. Schölhammer, B. Baretzky, W. Gust, E. Mittemeijer, and B. Straumal, Grain Boundary Grooving as an Indicator of Grain Boundary Phase Transformations, Interface Sci., 2001, 9, p 43–53CrossRefGoogle Scholar
  32. 32.
    B. Straumal, T. Muschik, W. Gust, and B. Predel, The Wetting Transition in High and Low Energy Grain Boundaries in the Cu(In) System, Acta Metal. Mater., 1992, 40, p 939–945CrossRefGoogle Scholar
  33. 33.
    B. Straumal, G. López, W. Gust, and E. Mittemeijer, Nanomaterials by Severe Plastic Deformation. Fundamentals—Processing—Applications, M.J. Zehetbauer and R.Z. Valiev, Ed., Wiley VCH, Weinheim, 2004, p 642–647 Google Scholar
  34. 34.
    C.-H. Yeh, L.-S. Chang, and B.B. Straumal, The Study on the Solidus Line in Sn-rich Region of Sn-In Phase Diagram, J. Phase Equilbria Diff., 2009, 30, p 254–257CrossRefGoogle Scholar
  35. 35.
    B.B. Straumal, G. López, E.J. Mittemeijer, W. Gust, and A.P. Zhilyaev, Grain Boundary Phase Transitions in the Al–Mg System and Their Influence on the High-Strain Rate Superplasticity, Def. Diff. Forum, 2003, 216–217, p 307–312CrossRefGoogle Scholar
  36. 36.
    B.B. Straumal, A.S. Gornakova, O.A. Kogtenkova, S.G. Protasova, V.G. Sursaeva, and B. Baretzky, Continuous and Discontinuous Grain Boundary Wetting in the Zn–Al System, Phys. Rev. B, 2008, 78, p 054202CrossRefGoogle Scholar
  37. 37.
    V. Murashov, B. Straumal, and P. Protsenko, Grain Boundary Wetting in Zn Bicrystals by a Sn-Based Melt, Def. Diff. Forum, 2006, 249, p 235–238CrossRefGoogle Scholar
  38. 38.
    C.-H. Yeh, L.-S. Chang, and B.B. Straumal, The Grain Boundary Wetting in the Sn—25 at.% In Alloys, Def. Diff. Forum, 2006, 258–260, p 491–496Google Scholar
  39. 39.
    B. Straumal, D. Molodov, and W. Gust, Wetting Transition on the Grain Boundaries in Al Contacting with Sn-Rich Melt, Interface Sci., 1995, 3, p 127–132CrossRefGoogle Scholar
  40. 40.
    F. Brochard-Wyart, J.M. di Meglio, D. Quéré, and P.G. de Gennes, Spreading of Nonvolatile Liquids in a Continuum Picture, Langmuir, 1991, 7, p 335–338CrossRefGoogle Scholar
  41. 41.
    B.B. Straumal, P. Zieba, and W. Gust, Grain Boundary Phase Transitions and Phase Diagrams, Int. J. Inorg. Mater., 2001, 3, p 1113–1115CrossRefGoogle Scholar
  42. 42.
    B. Straumal, E. Rabkin, W. Lojkowski, W. Gust, and L.S. Shvindlerman, Pressure Influence on the Grain Boundary Wetting Phase Transition in Fe–Si Alloys, Acta Mater., 1997, 45, p 1931–1940CrossRefGoogle Scholar
  43. 43.
    E. Bertrand, H. Dobbs, D. Broseta, J. Indekeu, D. Bonn, and J. Meunier, First-order and Critical Wetting of Alkanes on Water, Phys. Rev. Lett., 2000, 85, p 1282–1285CrossRefGoogle Scholar
  44. 44.
    J. Moon, S. Garoff, P. Wynblatt, and R. Suter, Pseudopartial Wetting and Precursor Film Growth in Immiscible Metal Systems, Langmuir, 2004, 20, p 402–408CrossRefGoogle Scholar
  45. 45.
    N.Q. Chinh, R.Z. Valiev, X. Sauvage, G. Varga, K. Havancsák, M. Kawasaki, B.B. Straumal, and T.G. Langdon, Grain Boundary Phenomena in an Ultrafine-Grained Al-Zn Alloy with Improved Mechanical Behavior for Micro-Devices, Adv. Eng. Mater., 2014, 16, p 1000–1009CrossRefGoogle Scholar
  46. 46.
    X. Sauvage, M.Y. Murashkin, B.B. Straumal, E. Bobruk, and R.Z. Valiev, Ultrafine Grained Structures Resulting from SPD-Induced Phase Transformation in Al-Zn Alloys, Adv. Eng. Mater., 2015, doi: 10.1002/adem.201500151 Google Scholar
  47. 47.
    B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.M. Gusak, M.F. Bulatov, A.B. Straumal, and B. Baretzky, Grain Boundary Phenomena in NdFeB-Based Hard Magnetic Alloys, Rev. Adv. Mater. Sci., 2014, 38, p 17–28Google Scholar
  48. 48.
    Y. Matsuura, Y. Hirosawa, H. Yamamoto, S. Fujimura, M. Sagawa, and K. Osamura, Phase Diagram of the Nd-Fe-B Ternary System, Jpn. J. Appl. Phys. Part 2-Lett., 1985, 24, p L635–L637CrossRefGoogle Scholar
  49. 49.
    G. Schneider, E.-T. Henig, G. Petzow, and H.H. Stadelmaier, Phase Relations in the System Fe-Nd-B, Zt. Metallkunde, 1986, 77, p 755–761Google Scholar
  50. 50.
    K.G. Knoch, B. Reinsch, and G. Petzow, Nd2Fe14B—Its Region of Primary Solidification, Zt. Metallkunde, 1994, 85, p 350–353Google Scholar
  51. 51.
    T. Schrell, J. Fidler, and H. Kronmüller, Remanence and Coercivity in Isotropic Nanocrystalline Permanent Magnets, Phys. Rev. B, 1994, 49, p 6100–6110CrossRefGoogle Scholar
  52. 52.
    D. Goll, M. Seeger, and H. Kronmüller, Magnetic and Microstructural Properties of Nanocrystalline Exchange Coupled PrFeB Permanent Magnets, J. Magn. Magn. Mater., 1998, 185, p 49–60CrossRefGoogle Scholar
  53. 53.
    N.M. Dempsey, T.G. Woodcock, H. Sepehri-Amin, Y. Zhang, H. Kennedy, D. Givord, K. Hono, and O. Gutfleisch, High-coercivity Nd-Fe-B Thick Films without Heavy Rare Earth Additions, Acta Mater., 2013, 61, p 4920–4927CrossRefGoogle Scholar
  54. 54.
    H. Sepehri-Amin, T. Ohkubo, and K. Hono, The Mechanism of Coercivity Enhancement by the Grain Boundary Diffusion Process of Nd-Fe-B Sintered Magnets, Acta Mater., 2013, 61, p 1982–1990CrossRefGoogle Scholar
  55. 55.
    B.B. Straumal, YuO Kucheev, I.L. Yatskovskaya, I.V. Mogilnikova, G. Schütz, and B. Baretzky, Grain Boundary Wetting in the NdFeB-based Hard Magnetic Alloys, J. Mater. Sci., 2012, 47, p 8352–8359CrossRefGoogle Scholar
  56. 56.
    E.I. Rabkin, V.N. Semenov, L.S. Shvindlerman, and B.B. Straumal, Penetration of Tin and Zinc along Tilt Grain Boundaries 43°[100] in Fe-5at.%Si Alloy: Premelting Phase Transition?, Acta Metall. Mater., 1991, 39, p 627–639CrossRefGoogle Scholar
  57. 57.
    O.I. Noskovich, E.I. Rabkin, V.N. Semenov, B.B. Straumal, and L.S. Shvindlerman, Wetting and Premelting Phase Transitions in 38°[100] Tilt Grain Boundaries in (Fe-12 at.%Si) Zn Alloy in the Vicinity of the A2-B2 Bulk Ordering in Fe–12 at.%Si Alloy, Acta Metall. Mater., 1991, 39, p 3091–3098CrossRefGoogle Scholar
  58. 58.
    B.B. Straumal, O.I. Noskovich, V.N. Semenov, L.S. Shvindlerman, W. Gust, and B. Predel, Premelting Transition on 38° 〈100〉 Tilt Grain Boundaries in (Fe-10at.%Si)-Zn Alloys, Acta Metall. Mater., 1992, 40, p 795–801CrossRefGoogle Scholar
  59. 59.
    V.N. Semenov, B.B. Straumal, V.G. Glebovsky, and W. Gust, Preparation of Fe-Si Single Crystals and Bicrystals for Diffusion Experiments by the Electron-Beam Floating Zone Technique, J. Crystal Growth, 1995, 151, p 180–186CrossRefGoogle Scholar
  60. 60.
    B. Straumal, E. Rabkin, L. Shvindlerman, and W. Gust, Grain Boundary Zinc Penetration in Fe-Si Alloys: Premelting Phase Transition on the Grain Boundaries, Mater. Sci. Forum, 1993, 126–128, p 391–394CrossRefGoogle Scholar
  61. 61.
    V.K. Gupta, D.H. Yoon, H.M. Meyer, and J. Luo, Thin Intergranular Films and Solid-State Activated Sintering in Nickel-Doped Tungsten, Acta Mater., 2007, 55, p 3131–3142CrossRefGoogle Scholar
  62. 62.
    J. Luo, V.K. Gupta, D.H. Yoon, and H.M. Meyer, Segregation-Induced Grain Boundary Premelting in Nickel-Doped Tungsten, Appl. Phys. Lett., 2005, 87, p 231902CrossRefGoogle Scholar
  63. 63.
    L. Li, D.E. Luzzi, and C.D. Graham, High-Resolution Electron-Microscope Study of the Grain boundary Phase in Rapidly Quenched Nd-Fe-B Permanent-Magnet Alloys, J. Mater. Eng. Perform., 1992, 1, p 205–235CrossRefGoogle Scholar
  64. 64.
    N. Watanabe, M. Itakura, and M. Nishida, Microstructure of High Coercivity Nd-Fe-Co-Ga-B Hot-Deformed Magnet Improved by the Dy Diffusion Treatment, J. Alloys Comp., 2013, 557, p 1–4CrossRefGoogle Scholar
  65. 65.
    Y.-G. Park and D. Shindo, Magnetic Domain Structures of Overquenched Nd-Fe-B Permanent Magnets Studied by Electron Holography, J. Magn. Magn. Mater., 2002, 238, p 68–74CrossRefGoogle Scholar
  66. 66.
    V.V. Volkov and Y. Zhu, Dynamic Magnetization Observations and Reversal Mechanisms of Sintered and Die-Upset Nd-Fe-B Magnets, J. Magn. Magn. Mater., 2000, 214, p 204–216CrossRefGoogle Scholar
  67. 67.
    H. Sepehri-Amin, T. Ohkubo, and K. Hono, Grain Boundary Structure and Chemistry of Dy-diffusion Processed Nd-Fe-B Sintered Magnets, J. Appl. Phys., 2010, 107, p 09A745CrossRefGoogle Scholar
  68. 68.
    K. Hono and H. Sepehri-Amin, Strategy for High-Coercivity Nd-Fe-B Magnets, Scripta Mater., 2012, 67, p 530–535CrossRefGoogle Scholar
  69. 69.
    H. Sepehri-Amin, Y. Une, T. Ohkub, K. Hono, and M. Sagawa, Microstructure of Fine-Grained Nd-Fe-B Sintered Magnets with High Coercivity, Scripta Mater., 2011, 65, p 396–399CrossRefGoogle Scholar
  70. 70.
    W.F. Li, H. Sepehri-Amin, T. Ohkubo, N. Hase, and K. Hono, Distribution of Dy in High-Coercivity (Nd, Dy)-Fe-B Sintered Magnet, Acta Mater., 2011, 59, p 3061–3069CrossRefGoogle Scholar
  71. 71.
    H. Sepehri-Amin, T. Ohkub, T. Nishiuchi, S. Hirosawa, and K. Hono, Coercivity Enhancement of Hydrogenation-Disproportionation-Desorption-Recombination Processed Nd-Fe-B Powders by the Diffusion of Nd-Cu Eutectic Alloys, Scripta Mater., 2010, 63, p 1124–1127CrossRefGoogle Scholar
  72. 72.
    K. Suresh, T. Ohkubo, Y.K. Takahashi, K. Oh-ishi, R. Gopalan, K. Hono, T. Nishiuchi, N. Nozawa, and S. Hirosawa, Consolidation of Hydrogenation-Disproportionation-Desorption Recombination Processed Nd-Fe-B Magnets by Spark Plasma Sintering, J. Magn. Magn. Mater., 2009, 321, p 3681–3686CrossRefGoogle Scholar
  73. 73.
    N. Watanabe, H. Umemoto, M. Ishimaru, M. Itakura, M. Nishida, and K. Machida, Microstructure Analysis of Nd-Fe-B Sintered Magnets Improved by Tb-metal Vapour Sorption, J. Microsc., 2009, 236, p 104–108CrossRefGoogle Scholar
  74. 74.
    H. Suzuki, Y. Satsu, and M. Komuro, Magnetic Properties of a Nd-Fe-B Sintered Magnet with Dy Segregation, J. Appl. Phys., 2009, 105, p 07A734Google Scholar
  75. 75.
    W.F. Li, T. Ohkubo, K. Hono, T. Nishiuchi, and S. Hirosawa, Coercivity Mechanism of Hydrogenation Disproportionation Desorption Recombination Processed Nd-Fe-B Based Magnets, Appl. Phys. Lett., 2008, 93, p 052505CrossRefGoogle Scholar
  76. 76.
    N. Watanabe, H. Umemoto, M. Itakura, M. Nishida, and K. Machida, Grain Boundary Structure of High Coercivity Nd-Fe-B Sintered Magnets with Tb-Metal Vapor Sorption, IOP Conf. Series, Mater. Sci. Eng., 2009, 1, p 012033Google Scholar
  77. 77.
    M. Yan, L.Q. Yu, W. Luo, W. Wang, W.Y. Zhang, and Y.H. Wen, Change of Microstructure and Magnetic Properties of Sintered Nd-Fe-B Induced by Annealing, J. Magn. Magn. Mater., 2006, 301, p 1–5CrossRefGoogle Scholar
  78. 78.
    N. Oono, M. Sagawa, R. Kasada, H. Matsui, and A. Kimura, Microstructural Evaluation of Dy-Ni-Al Grain-Boundary-Diffusion (GBD) Treatment on Sintered Nd-Fe-B Magnet, Mater. Sci. Forum, 2010, 654, p 2919–2922CrossRefGoogle Scholar
  79. 79.
    Q. Ao, W. Liu, and J. Wu, Microstructure of Explosively Compacted Nd-Fe-B Magnets, Mater. Trans., 2005, 46, p 123–125CrossRefGoogle Scholar
  80. 80.
    Q. Liu, F. Xu, J. Wang, X. Dong, L. Zhang, and J. Yang, An investigation of the Microstructure in the Grain Boundary Region of Nd-Fe-B Sintered Magnet During Post-Sintering Annealing, Scripta Mater., 2013, 68, p 687–690CrossRefGoogle Scholar
  81. 81.
    T.-H. Kim, S.-R. Lee, S. Namkumg, and T.-S. Jang, A Study on the Nd-rich Phase Evolution in the Nd-Fe-B Sintered Magnet and its Mechanism During Post-Sintering Annealing, J. Alloys Comp., 2012, 537, p 261–268CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • B. B. Straumal
    • 1
    • 2
    • 3
    Email author
  • A. A. Mazilkin
    • 1
    • 2
  • S. G. Protasova
    • 1
    • 4
  • G. Schütz
    • 4
  • A. B. Straumal
    • 1
    • 3
  • B. Baretzky
    • 2
  1. 1.Institute of Solid State Physics, Russian Academy of SciencesChernogolovka, Moscow DistrictRussia
  2. 2.Karlsruher Institut für TechnologieInstitut für NanotechnologieEggenstein-LeopoldshafenGermany
  3. 3.National University of Science and Technology (MISIS)MoscowRussia
  4. 4.Max-Planck-Institute for Intelligent SystemsStuttgartGermany

Personalised recommendations