Journal of Materials Engineering and Performance

, Volume 24, Issue 12, pp 4835–4843 | Cite as

Electroless Ni-P/SiC Nanocomposite Coatings With Small Amounts of SiC Nanoparticles for Superior Corrosion Resistance and Hardness

  • Mohammad Islam
  • Muhammad Rizwan Azhar
  • Yasir Khalid
  • Rawaiz Khan
  • Hany S. Abdo
  • Mushtaq A. Dar
  • Olamilekan R. Oloyede
  • T. David Burleigh
Article

Abstract

The addition of silicon carbide (SiC) nanoparticles into electroless nickel (Ni)-based coatings improves both corrosion resistance and mechanical properties of the resulting Ni-P/SiC nanocomposite coatings, making them potential candidate as protective coatings in aggressive environments. Ni-P/SiC nanocomposite coatings were produced from precursor bath with small SiC loading levels (0.25 or 1.0 g/L) and characterized for morphology, corrosion resistance, and hardness. Microstructural examination using FE-SEM and AFM revealed that incorporation of uniformly dispersed SiC nanoparticles leads to smaller nodule size with fine-grain structure and low surface roughness. Electrochemical impedance spectroscopy studies in 4 wt.% NaCl solution showed that the nanocomposite coatings exhibit excellent corrosion resistance, as indicated by high charge-transfer resistance and low double-layer capacitance values of ~137 kΩ cm2 and 19 µF cm−2, respectively. The coatings maintained their structural integrity even after 5 days of saline bath immersion, as there was no cracking in the deposit microstructure besides formation of shallow pits and submicron-sized pores. A two-fold increase in the average hardness value was noticed from 4.5 (pure Ni-P) to 8.5 GPa (Ni-P/SiC coating) which can be ascribed to modified deposit morphology and uniformly dispersed SiC nanoparticles that act as obstacles to plastic deformation.

Keywords

EIS electroless process nanocomposite coatings nanoindentation SiC nanoparticles 

Notes

Acknowledgments

The authors gratefully acknowledge the technical and financial support of the Research Center of College of Engineering, Deanship of Scientific Research, King Saud University.

References

  1. 1.
    T. Liu, L. Zhao, D. Wang, J. Zhu, B. Wang, and C. Guo, Corrosion Resistance of Nickel Foam Modified with Electroless Ni-P alloy as Positive Current Collector in a Lithium Ion Battery, RSC Adv., 2013, 3, p 25648–246851CrossRefGoogle Scholar
  2. 2.
    Y. Lu, J.-K. Liu, X.-Y. Liu, S. Huang, T.-Q. Wang, X.-L. Wang, C.D. Gu, J.P. Tu, and S.X. Mao, Facile Synthesis of Ni-Coated Ni2P for Supercapacitor Applications, Cryst. Eng. Comm., 2013, 15, p 7071–7079CrossRefGoogle Scholar
  3. 3.
    P. Sahoo and S.K. Das, Tribology of Electroless Nickel Coatings—A Review, Mater. Des., 2011, 32, p 1760–1775CrossRefGoogle Scholar
  4. 4.
    M. Islam and O.T. Inal, Development of Electron Reflection Suppression Materials for Improved Thermionic Energy Converter Performance using Thin Film Deposition Techniques, J. Appl. Phys., 2006, 100, p 084903 (12 pages)CrossRefGoogle Scholar
  5. 5.
    C. Fukuhara, R. Hyodo, K. Yamamoto, K. Masuda, and R. Watanabe, A Novel Nickel-Based Catalyst for Methane Dry Reforming: A Metal Honeycomb-Type Catalyst Prepared by Sol-Gel Method and Electroless Plating, Appl. Catal. A, 2013, 468, p 18–25CrossRefGoogle Scholar
  6. 6.
    D. Li, L. Wang, P. Zhang, S. Chen, and J. Xu, HI, Decomposition over PtNi/C Bimetallic Catalysts Prepared by Electroless Plating, Int. J. Hydrogen Energy, 2013, 38, p 10839–10844CrossRefGoogle Scholar
  7. 7.
    S.S. Muir, Z. Chen, B.J. Wood, L. Wang, G.Q. Lu, and X. Yao, New Electroless Plating Method for Preparation of Highly Active Co-B Catalysts for NaBH4 Hydrolysis, Int. J. Hydrogen Energy, 2014, 39, p 414–425CrossRefGoogle Scholar
  8. 8.
    K. Zeng, R. Stierman, D. Abbott, and M. Murtuza, The Root Cause of Black Pad Failure of Solder Joints with Electroless Ni/Immersion Gold Plating, JOM, 2006, 58, p 75–79CrossRefGoogle Scholar
  9. 9.
    Z. Qi, W. Lu, A. Guo, Y. Hu, W. Lee, and X. Zhang, Investigation on Circular Plating Pit of Electroless Ni-P Coating, Ind. Eng. Chem. Res., 2014, 53, p 3097–3104CrossRefGoogle Scholar
  10. 10.
    S. Kundu, S.K. Das, and P. Sahoo, Properties of Electroless Nickel at Elevated Temperature-A Review, Proc. Eng., 2014, 97, p 1698–1706CrossRefGoogle Scholar
  11. 11.
    N. Nwosu, A. Davidson, C. Hindle, and M. Barker, On the Influence of Surfactant Incorporation During Electroless Nickel Plating, Ind. Eng. Chem. Res., 2012, 51, p 5635–5644CrossRefGoogle Scholar
  12. 12.
    M. Islam and T. Shehbaz, Effect of Synthesis Conditions and Post-Deposition Treatments on Composition and Structural Morphology of Medium-Phosphorus Electroless Ni-P Films, Surf. Coat. Technol., 2011, 205, p 4397–4400CrossRefGoogle Scholar
  13. 13.
    S. Alirezaei, S.M. Monirvaghefi, A. Saatchi, M. Ürgen, and K. Kazmanlı, Novel Investigation on Tribological Properties of Ni-P-Ag-Al2O3 Hybrid Nanocomposite Coatings, Tribol. Int., 2013, 62, p 110–116CrossRefGoogle Scholar
  14. 14.
    M. Islam, M.R. Azhar, N. Fredj, T.D. Burleigh, O.R. Oloyede, A.A. Almajid, and S.I. Shah, Influence of SiO2 Nanoparticles on Hardness and Corrosion Resistance of Electroless Ni-P Coatings, Surf. Coat. Technol., 2015, 261, p 141–148CrossRefGoogle Scholar
  15. 15.
    Y. Wu, H. Liu, B. Shen, L. Liu, and W. Hu, The Friction and Wear of Electroless Ni-P Matrix with PTFE and/or SiC Particles Composite, Tribol. Int., 2006, 39, p 553–559CrossRefGoogle Scholar
  16. 16.
    M. Islam, M.R. Azhar, N. Fredj, and T.D. Burleigh, Electrochemical Impedance Spectroscopy and Indentation Studies of Pure and Composite Electroless Ni-P Coatings, Surf. Coat. Technol., 2013, 236, p 262–268CrossRefGoogle Scholar
  17. 17.
    J.N. Balaraju, T.S.N. Sankara Narayanan, and S.K. Seshadri, Electroless Ni-P Composite Coatings, J. Appl. Electrochem., 2003, 33, p 807–816CrossRefGoogle Scholar
  18. 18.
    G.O. Mallory and J.B. Hajdu, Electroless Plating: Fundamentals and Applications, Cambridge University Press, Cambridge, 1990, p 207–227Google Scholar
  19. 19.
    H.-L. Wang, L.-Y. Liu, Y. Dou, W.-Z. Zhang, and W.-F. Jiang, Preparation and Corrosion Resistance of Electroless Ni-P/SiC Functionally Gradient Coatings on AZ91D Magnesium Alloy, Appl. Surf. Sci., 2013, 286, p 319–327CrossRefGoogle Scholar
  20. 20.
    C.J. Lin, K.C. Chen, and J.L. He, The Cavitation Erosion Behavior of Electroless Ni-P-SiC Composite Coating, Wear, 2006, 261, p 1390–1396CrossRefGoogle Scholar
  21. 21.
    F. Bigdeli and S.R. Allahkaram, An Investigation on Corrosion Resistance of As-Applied and Heat Treated Ni-P/NanoSiC Coatings, Mater. Des., 2009, 30, p 4450–4453CrossRefGoogle Scholar
  22. 22.
    S. Zhang, K. Han, and L. Cheng, The Effect of SiC Particles Added in Electroless Ni-P Plating Solution on the Properties of Composite Coatings, Surf. Coat. Technol., 2008, 202, p 2807–2812CrossRefGoogle Scholar
  23. 23.
    C. Ma, F. Wu, Y. Ning, and F. Xia, Effect of Heat treatment on Structures and Corrosion Characteristics of Electroless Ni-P-SiC Nanocomposite Coatings, Ceram. Int., 2014, 40, p 9279–9284CrossRefGoogle Scholar
  24. 24.
    S. Ozkan, G. Hapçı, G. Orhan, and K. Kazmanl, Electrodeposited Ni/SiC Nanocomposite Coatings and Evaluation of Wear and Corrosion Properties, Surf. Coat. Technol., 2013, 232, p 734–741CrossRefGoogle Scholar
  25. 25.
    M.M. Al-Abdallah, A.K. Maayta, M.A. Al-Qudah, and N.A.F. Al-Rawashdeh, Corrosion Behavior of Copper in Chloride Media, Open Corros. J., 2009, 2, p 71–76CrossRefGoogle Scholar
  26. 26.
    K. Krishnaveni, T.S.N.S. Narayanan, and S.K. Seshadri, Corrosion Resistance of Electrodeposited Ni-B and Ni-B-Si3N4 Composite Coatings, J. Alloy Compd., 2009, 480, p 765–770CrossRefGoogle Scholar
  27. 27.
    V. Cech, T. Lasota, E. Palesch, and J. Lukes, The Critical Influence of Surface Topography on Nanoindentation Measurements of a-SiC: H Films, Surf. Coat. Technol., 2015, 261, p 114–121CrossRefGoogle Scholar
  28. 28.
    R. Soleimani, F. Mahboubi, S.Y. Arman, M. Kazemi, and A. Maniee, Development of Mathematical Model to Evaluate Microstructure and Corrosion Behavior of Electroless Ni-P/Nano-SiC Coating Deposited on 6061 Aluminum Alloy, J. Ind. Eng. Chem., 2015, 23, p 328–337CrossRefGoogle Scholar
  29. 29.
    M. Franco, W. Sha, S. Malinov, and H. Liu, Micro-Scale Wear Characteristics of Electroless Ni-P/SiC Composite Coating under Two Different Sliding Conditions, Wear, 2014, 317, p 254–264CrossRefGoogle Scholar
  30. 30.
    C.F. Malfatti, H.M. Veit, C.B. Santos, M. Metzner, H. Hololeczek, and J.-P. Bonino, Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution, Tribol. Lett., 2009, 36, p 165–173CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Mohammad Islam
    • 1
  • Muhammad Rizwan Azhar
    • 2
  • Yasir Khalid
    • 1
  • Rawaiz Khan
    • 3
  • Hany S. Abdo
    • 1
    • 4
  • Mushtaq A. Dar
    • 1
  • Olamilekan R. Oloyede
    • 5
  • T. David Burleigh
    • 6
  1. 1.Center of Excellence for Research in Engineering Materials (CEREM), Advanced Manufacturing InstituteKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Chemical Engineering DepartmentCurtin UniversityBentleyAustralia
  3. 3.Department of Chemical Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Mechanical Design and Materials Department, Faculty of Energy EngineeringAswan UniversityAswanEgypt
  5. 5.Institute for Materials Research (IMR), School of Chemical & Process Engineering, Faculty of EngineeringUniversity of LeedsLeedsUK
  6. 6.Materials and Metallurgical Engineering DepartmentNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations