Journal of Materials Engineering and Performance

, Volume 24, Issue 10, pp 4022–4031 | Cite as

Analysis of In Situ Mechanical Properties of Phases in High-Alloyed White Iron Measured by Grid Nanoindentation

  • Ling ChenEmail author
  • Jan Eric Ståhl
  • Jinming Zhou


The paper presents an analysis of the in situ mechanical properties (e.g., hardness, elastic modulus, and volume fraction) of phases in high-alloy white iron measured by grid nanoindentation statistically, to reveal the contributions of individual phase properties to the global properties of the material. The in situ mechanical properties of phases measured by grid indentation were validated through targeted indentation. Gaussian and Weibull mixture models were used in analyzing the grid nanoindentation measurements to assess the goodness-of-fit of the indentation data. The nanohardness and indentation modulus measured by grid nanoindentation were directly correlated to the microstructural characteristics of the sample materials. The statistical analysis results were also compared with the mechanical properties and volume fractions obtained using targeted indentation and quantitative metallography based on microstructure analysis to validate the statistical results. The influences of heat treatment on the microstructure, hardness, and elastic modulus of individual phases in the material are also discussed.


high-alloy white iron mechanical properties nanoindentation statistics 



This research is part of the strategic research program, the Sustainable Production Initiative—SPI, a cooperative effort of Lund University and Chalmers University of Technology. The authors would like to thank Xylem Water Solution AB for providing the experimental materials and support.


  1. 1.
    J.R. Davis, ASM Specialty Handbook: Cast Irons, ASM International, Materials Park, 1996Google Scholar
  2. 2.
    C.P. Tabrett, I.R. Sare, and M.R. Ghomashchi, Microstructure-Property Relationships in High Chromium White Iron Alloys, Int. Mater. Rev., 1996, 41(2), p 59–82CrossRefGoogle Scholar
  3. 3.
    Ö.N. Doğan, J.A. Hawk, and G. Laird, II, Solidification Structure and Abrasion Resistance of High Chromium White Irons, Metall. Mater. Trans. A, 1997, 28(6), p 1315–1328CrossRefGoogle Scholar
  4. 4.
    J. Asensio, J.A. Pero-Sanz, and J.I. Verdeja, Microstructure Selection Criteria for Cast Irons with More Than 10 wt.% Chromium for Wear Applications, Mater. Charact., 2002, 49(2), p 83–93CrossRefGoogle Scholar
  5. 5.
    J.R. Gregory and S.M. Spearing, Nanoindentation of Neat and In Situ Polymers in Polymer-Matrix Composites, Compos. Sci. Technol., 2005, 65(3–4), p 595–607CrossRefGoogle Scholar
  6. 6.
    N.X. Randall, M. Vandamme, and F.-J. Ulm, Nanoindentation Analysis as a Two-Dimensional Tool for Mapping the Mechanical Properties of Complex Surfaces, J. Mater. Res., 2011, 24(03), p 679–690CrossRefGoogle Scholar
  7. 7.
    M. Delince, P.J. Jacques, and T. Pardoen, Separation of Size-Dependent Strengthening Contributions in Fine-Grained Dual Phase Steels by Nanoindentation, Acta Mater., 2006, 54(12), p 3395–3404CrossRefGoogle Scholar
  8. 8.
    F.J. Ulm et al., Does Microstructure Matter for Statistical Nanoindentation Techniques?, Cem. Concr. Compos., 2010, 32(1), p 92–99CrossRefGoogle Scholar
  9. 9.
    G. Constantinides et al., Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation, Mater. Sci. Eng. A, 2006, 430(1–2), p 189–202CrossRefGoogle Scholar
  10. 10.
    G. Constantinides and F.-J. Ulm, The Effect of Two Types of C-S-H on the Elasticity of Cement-Based Materials: Results from Nanoindentation and Micromechanical Modeling, Cem. Concr. Res., 2004, 34(1), p 67–80CrossRefGoogle Scholar
  11. 11.
    F.-J. Ulm and Y. Abousleiman, The Nanogranular Nature of Shale, Acta Geotech., 2006, 1(2), p 77–88CrossRefGoogle Scholar
  12. 12.
    K.S. Tai, H.J. Qi, and C. Ortiz, Effect of Mineral Content on the Nanoindentation Properties and Nanoscale Deformation Mechanisms of Bovine Tibial Cortical Bone, J. Mater. Sci. Mater. Med., 2005, 16(10), p 947–959CrossRefGoogle Scholar
  13. 13.
    H. Engqvist and U. Wiklund, Mapping of Mechanical Properties of WC-Co Using Nanoindentation, Tribol. Lett., 2000, 8(2–3), p 147–152CrossRefGoogle Scholar
  14. 14.
    J.L. Cuy et al., Nanoindentation Mapping of the Mechanical Properties of Human Molar Tooth Enamel, Arch. Oral Biol., 2002, 47(4), p 281–291CrossRefGoogle Scholar
  15. 15.
    G. Balooch et al., Evaluation of a New Modulus Mapping Technique to Investigate Microstructural Features of Human Teeth, J. Biomech., 2004, 37(8), p 1223–1232CrossRefGoogle Scholar
  16. 16.
    J.J. Roa et al., Hardness of FRHC-Cu Determined by Statistical Analysis, J. Mater. Eng. Perform., 2013, 23(2), p 637–642CrossRefGoogle Scholar
  17. 17.
    P. Kosasu, S. Inthidech, P. Srichareonchai, and Y. Matsubara, Effect of Silicon on Subcritical Heat Treatment Behavior and Wear Resistance of 16 wt.% Cr Cast Iron with 2 wt.% Mo, J. Met. Mater. Miner., 2012, 22(2), p 89–95Google Scholar
  18. 18.
    J. Němeček, V. Králík, and J. Vondřejc, Micromechanical Analysis of Heterogeneous Structural Materials, Cem. Concr. Compos., 2013, 36, p 85–92CrossRefGoogle Scholar
  19. 19.
    G.F. Vander Voort, ASM International Handbook Committee, Metallography and Microstructures, ASM International, Materials Park, 2004, p 247–259Google Scholar
  20. 20.
    W.C. Oliver and G.M. Pharr, Nanoindentation in Materials Research: Past, Present, and Future, MRS Bull., 2010, 35(11), p 897–907CrossRefGoogle Scholar
  21. 21.
    W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20CrossRefGoogle Scholar
  22. 22.
    I. Hussainova, E. Hamed, and I. Jasiuk, Nanoindentation Testing and Modeling of Chromium-Carbide-Based Composites, Mech. Compos. Mater., 2011, 46(6), p 667–678CrossRefGoogle Scholar
  23. 23.
    G. Constantinides, F. Ulm, and K. Van Vliet, On the Use of Nanoindentation for Cementitious Materials, Mater. Struct., 2003, 36(257), p 191–196CrossRefGoogle Scholar
  24. 24.
    F.J. Ulm et al., Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, Shale, J. Am. Ceram. Soc., 2007, 90(9), p 2677–2692CrossRefGoogle Scholar
  25. 25.
    J.-E. Ståhl, Metal Cutting—Theories and Models, Lund University, Lund, 2012, p 185–212Google Scholar
  26. 26.
    F.R.S. de Gusmão, E.M.M. Ortega, and G.M. Cordeiro, The Generalized Inverse Weibull Distribution, Stat. Pap., 2009, 52(3), p 591–619CrossRefGoogle Scholar
  27. 27.
    J.I. McCool, Extending the Capability of the Greenwood Williamson Microcontact Model, J. Tribol., 2000, 122(3), p 496CrossRefGoogle Scholar
  28. 28.
    M. Tiryakioglu and J. Campbell, Weibull Analysis of Mechanical Data for Castings: A Guide to the Interpretation of Probability Plots, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41A(12), p 3121–3129CrossRefGoogle Scholar
  29. 29.
    A.C. Fischer-Cripps, Nanoindentation. Mechanical Engineering, Vol 1, 3rd edn., FF.Ling, Springer, Killarney Heights, NSW, 2011, p 272.Google Scholar
  30. 30.
    Y. Xia et al., Effect of Surface Roughness in the Determination of the Mechanical Properties of Material Using Nanoindentation Test, Scanning, 2014, 36(1), p 134–149CrossRefGoogle Scholar
  31. 31.
    J.Y. Kim et al., Influence of Surface-Roughness on Indentation Size Effect, Acta Mater., 2007, 55(10), p 3555–3562CrossRefGoogle Scholar
  32. 32.
    K.A. Brownlee, Statistical Theory and Methodology in Science and Engineering, Wiley, New York, 1965, p 93–105Google Scholar
  33. 33.
    T.V. Rajan, C.P. Sharma, and A. Sharma, Heat Treatment: Principles and Techniques, PHI, Learning, New Delhi, 2012, p 330Google Scholar
  34. 34.
    S. Ji et al., Weibull Statistical Analysis of the Effect of Melt Conditioning on the Mechanical Properties of AM60 Alloy, Mater. Sci. Eng. A, 2013, 566, p 119–125CrossRefGoogle Scholar
  35. 35.
    H. Gasan and F. Erturk, Effects of a Destabilization Heat Treatment on the Microstructure and Abrasive Wear Behavior of High-Chromium White Cast Iron Investigated Using Different Characterization Techniques, Metall. Mater. Trans. A, 2013, 44(11), p 4993–5005CrossRefGoogle Scholar
  36. 36.
    A. Wiengmoon et al., Microstructural and Crystallographical Study of Carbides in 30 wt.%Cr Cast Irons, Acta Mater., 2005, 53(15), p 4143–4154CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  1. 1.Division of Production and Materials EngineeringLund UniversityLundSweden

Personalised recommendations