Advertisement

Journal of Materials Engineering and Performance

, Volume 24, Issue 9, pp 3471–3486 | Cite as

Prediction of the Grain-Microstructure Evolution Within a Friction Stir Welding (FSW) Joint via the Use of the Monte Carlo Simulation Method

  • M. Grujicic
  • S. Ramaswami
  • J. S. Snipes
  • V. Avuthu
  • R. Galgalikar
  • Z. Zhang
Article

Abstract

A thermo-mechanical finite element analysis of the friction stir welding (FSW) process is carried out and the evolution of the material state (e.g., temperature, the extent of plastic deformation, etc.) monitored. Subsequently, the finite-element results are used as input to a Monte-Carlo simulation algorithm in order to predict the evolution of the grain microstructure within different weld zones, during the FSW process and the subsequent cooling of the material within the weld to room temperature. To help delineate different weld zones, (a) temperature and deformation fields during the welding process, and during the subsequent cooling, are monitored; and (b) competition between the grain growth (driven by the reduction in the total grain-boundary surface area) and dynamic-recrystallization grain refinement (driven by the replacement of highly deformed material with an effectively “dislocation-free” material) is simulated. The results obtained clearly revealed that different weld zones form as a result of different outcomes of the competition between the grain growth and grain refinement processes.

Keywords

friction stir welding grain-microstructure evolution Monte Carlo process modeling 

Notes

Acknowledgments

The material presented in this paper is based on work supported by an Army Research Office (ARO) sponsored grant entitled “Friction Stir Welding Behavior of Selected 2000-series and 5000-series Aluminum Alloys” (Contract Number W911NF-11-1-0207). The authors are indebted to Dr. Asher Rubinstein of ARO for his continuing support and interest in the present work.

References

  1. 1.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991Google Scholar
  2. 2.
    C.J. Dawes and W.M. Thomas, Friction Stir Joining of Aluminum Alloys, TWI, Bull., 1996, 6, p 124Google Scholar
  3. 3.
    M. Grujicic, G. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20, p 1097–1108CrossRefGoogle Scholar
  4. 4.
    H.W. Zhang and Z. Zhang, Numerical Modeling of Friction Stir Welding Process by Using Rate-Dependent Constitutive Model, J. Mater. Sci. Technol., 2007, 23, p 73–80Google Scholar
  5. 5.
    H.W. Zhang, Z. Zhang, J. Bie, L. Zhou, and J.T. Chen, Effect of Viscosity on Material Behaviors in Friction Stir Welding Process, Trans. Nonferrous Met. Soc. China, 2006, 16, p 1045–1052CrossRefGoogle Scholar
  6. 6.
    H.W. Zhang and Z. Zhang, Numerical Simulation of Friction Stir Welding by Using Semi-Coupled Model, International Conference on Enhancement and Promotion of Computational Methods in Engineering Science and Mechanics, P. Hu and J. N. Reddy, Ed., August 10-12, 2006 Changchun, China, 2006, p 52–62Google Scholar
  7. 7.
    X.M. Deng and S.W. Xu, Two-Dimensional Finite Element Simulation of Material Flow in Friction Stir Welding Process, J. Manuf. Process., 2004, 6(2), p 125–133CrossRefGoogle Scholar
  8. 8.
    S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld. Join., 2001, 6, p 191–193CrossRefGoogle Scholar
  9. 9.
    H.W. Zhang and Z. Zhang, Numerical Modeling of Friction Stir Welding Process by Using Rate-Dependent Constitutive Model, J. Mater. Sci. Technol., 2007, 23, p 73–80Google Scholar
  10. 10.
    H.W. Zhang, Z. Zhang, J. Bie, L. Zhou, and J.T. Chen, Effect of Viscosity on Material Behaviors in Friction Stir Welding Process, Trans. Nonferrous Met. Soc. China, 2006, 16, p 1045–1052CrossRefGoogle Scholar
  11. 11.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224, p 1–16CrossRefGoogle Scholar
  12. 12.
    M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224, p 609–625CrossRefGoogle Scholar
  13. 13.
    M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19, p 672–684CrossRefGoogle Scholar
  14. 14.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20, p 11–23CrossRefGoogle Scholar
  15. 15.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083–H321, J. Mater. Eng. Perform., 2011, 20, p 855–864CrossRefGoogle Scholar
  16. 16.
    M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRefGoogle Scholar
  17. 17.
    M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796Google Scholar
  18. 18.
    M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.-F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRefGoogle Scholar
  19. 19.
    M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRefGoogle Scholar
  20. 20.
    M. Grujicic, B. Pandurangan, A. Arakere, C.-F. Yen, and B.A. Cheeseman, Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions, J. Mater. Eng. Perform., 2013, 22, p 30–40CrossRefGoogle Scholar
  21. 21.
    K.A. Fraser, L. St-Georges, and L.I. Kiss, Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process, Materials, 2014, 7, p 3435–3452CrossRefGoogle Scholar
  22. 22.
    A.C.F. Silva, D.F.O. Braga, M.A.V. de Figueiredo, and P.M.G.P. Moreira, Friction Stir Welded T-Joints Optimization, Mater. Des., 2014, 55, p 120–127CrossRefGoogle Scholar
  23. 23.
    H. Wang, P.A. Colegrove, and J.F. dos Santos, Numerical Investigation of the Tool Contact Condition During Friction Stir Welding of Aerospace Aluminium Alloy, Comput. Mater. Sci., 2013, 71, p 101–108CrossRefGoogle Scholar
  24. 24.
    H.-H. Cho, S.-T. Hong, J.-H. Roh, H.-S. Choi, S.H. Kang, R.J. Steel, and H.N. Han, Three-Dimensional Numerical and Experimental Investigation on Friction Stir Welding Processes of Ferritic Stainless Steel, Acta Mater., 2013, 61, p 2649–2661CrossRefGoogle Scholar
  25. 25.
    W. Pan, D. Li, A.M. Tartakovsky, S. Ahzib, M. Khraisheh, and M. Khaleel, A New Smoothed Particle Hydrodynamics Non-Newtonian Model for Friction Stir Welding: Process Modeling and Simulation of Microstructure Evolution in a Magnesium Alloy, Int. J. Plast, 2013, 48, p 189–204CrossRefGoogle Scholar
  26. 26.
    R.S. Saluja, R.G. Narayanan, and S. Das, Cellular Automata Finite Element (CAFE) Model to Predict the Forming of Friction Stir Welded Blanks, Comput. Mater. Sci., 2012, 58, p 87–100CrossRefGoogle Scholar
  27. 27.
    H.S. Arora, H. Singh, and B.K. Dhindaw, Numerical Simulation of Temperature Distribution Using Finite Difference Equations and Estimation of the Grain Size during Friction Stir Processing, Mater. Sci. Eng. A, 2012, 543, p 231–242CrossRefGoogle Scholar
  28. 28.
    A. Simar, Y. Bréchet, B. de Meester, A. Denquin, C. Gallais, and T. Pardoen, Integrated Modeling of Friction Stir Welding of 6xxx Series Al Alloys: Process, Microstructure and Properties, Prog. Mater Sci., 2012, 57, p 95–183CrossRefGoogle Scholar
  29. 29.
    E. Hersent, J.H. Driver, D. Piot, and C. Desrayaud, Integrated Modelling of Precipitation During Friction Stir Welding of 2024-T3 Aluminium Alloy, Mater. Sci. Technol., 2010, 26, p 1345–1352CrossRefGoogle Scholar
  30. 30.
    G. Buffa, L. Fratini, M. Schneider, and M. Merklein, In Micro and Macro Mechanical Characterization of Friction Stir Welded Ti-6Al-4V Lap Joints Through Experiments and Numerical Simulation, J. Mater. Process. Technol., 2013, 213, p 2312–2322CrossRefGoogle Scholar
  31. 31.
    M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, and B.A. Cheeseman, Ballistic-Failure Mechanisms in Gas Metal Arc Welds of MIL A46100 Armor-Grade Steel: A Computational Investigation, J. Mater. Eng. Perform., 2014, 23(9), p 3108–3125CrossRefGoogle Scholar
  32. 32.
    M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, C.-F. Yen, and B.A. Cheeseman, Linear Friction Welding Process Model for Carpenter Custom 465 Martensitic Precipitation-Hardened Stainless Steel, J. Mater. Eng. Perform., 2014, 23(6), p 2182–2198CrossRefGoogle Scholar
  33. 33.
    M.F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier, Oxford, 2005Google Scholar
  34. 34.
    G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983.Google Scholar
  35. 35.
    ABAQUS Version 6.14, User Documentation, Dassault Systemès, 2011.Google Scholar
  36. 36.
    M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Computer Simulation of Grain Growth—I. Kinetics, Acta Metall., 1984, 32, p 783–791CrossRefGoogle Scholar
  37. 37.
    D.J. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S. Grest, Computer Simulation of Grain Growth—II. Grain Size Distribution, Topology, and Local Dynamics, Acta Metall., 1984, 32, p 793–802CrossRefGoogle Scholar
  38. 38.
    A.D. Rollett, M.J. Luton, and D.J. Srolovitz, Microstructural Simulation of Dynamic Recrystallization, Acta Metall. Mater., 1992, 40, p 43–55CrossRefGoogle Scholar
  39. 39.
    P. Peczak and M.J. Luton, A Monte Carlo Study of the Influence of Dynamic Recovery on Dynamic Recrystallization, Acta Metall. Mater., 1993, 41, p 59–71CrossRefGoogle Scholar
  40. 40.
    D.J. Srolovitz, G.S. Grest, and M.P. Anderson, Computer Simulation of Recrystallization—I. Homogeneous Nucleation and Growth, Acta Metall., 1986, 34, p 1833–1845CrossRefGoogle Scholar
  41. 41.
    D.J. Srolovitz, G.S. Grest, M.P. Anderson, and A.D. Rollett, Computer Simulation of Recrystallization—II. Heterogeneous Nucleation and Growth, Acta Metall., 1988, 36, p 2115–2128CrossRefGoogle Scholar
  42. 42.
    M. Grujicic, G. Cao, and R.S. Figliola, Computer Simulations of the Evolution of Solidification Microstructure in the LENSTM Rapid Fabrication Process, Appl. Surf. Sci., 2001, 183, p 43–57CrossRefGoogle Scholar
  43. 43.
    M. Grujicic, G. Cao, and R.S. Miller, Computer Modeling of the Evolution of Dendrite Microstructure in Binary Alloys During Non-isothermal Solidification, J. Mater. Synth. Process., 2002, 10, p 191–203CrossRefGoogle Scholar
  44. 44.
    R.S. Miller, G. Cao, and M. Grujicic, Monte Carlo Simulation of Three-Dimensional Non-isothermal Grain-Microstructure Evolution: Application to LENS™ Rapid Fabrication, J. Mater. Synth. Process., 2001, 9, p 329–345CrossRefGoogle Scholar
  45. 45.
    J.H. Gao and R.G. Thompson, Real Time-Temperature Models for Monte Carlo Simulations of Normal Grain Growth, Acta Mater., 1996, 44(11), p 4565–4570CrossRefGoogle Scholar
  46. 46.
    L. Fratini, G. Buffa, and D. Palmeri, Using a Neural Network for Predicting the Average Grain Size in Friction Stir Welding Processes, Comput. Struct., 2009, 87, p 1166–1174CrossRefGoogle Scholar
  47. 47.
    M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, C.-F. Yen, and B.A. Cheeseman, Optimization of Gas Metal Arc Welding Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor, J. Mater. Eng. Perform., 2015, 24(1), p 229–244Google Scholar
  48. 48.
    M. Grujicic, R. Galgalikar, S. Ramaswami, J.S. Snipes, V. Chenna, and R. Yavari, Finite-Element Analysis of Horizontal-Axis Wind-Turbine Gearbox Failure via Tooth-Bending Fatigue, Int. J. Mater. Mech. Eng., 2014, 3, p 6–15Google Scholar
  49. 49.
    M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Improved Gas Metal Arc Welding Multi-Physics Process Model and Its Application to MIL A46100 Armor-Grade Steel Butt-Welds, Multidiscip. Model. Mater. Str., 2014, 10(2), p 176–210Google Scholar
  50. 50.
    M. Grujicic, S. Ramaswami, J.S. Snipes, R. Galgalikar, V. Chenna, and R. Yavari, Computer-Aided Engineering Analysis of Tooth-Bending Fatigue-Based Failure in Horizontal-Axis Wind-Turbine Gearboxes, Int. J. Struct. Integr., 2014, 5, p 60–82Google Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • M. Grujicic
    • 1
  • S. Ramaswami
    • 1
  • J. S. Snipes
    • 1
  • V. Avuthu
    • 1
  • R. Galgalikar
    • 1
  • Z. Zhang
    • 2
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina

Personalised recommendations