Journal of Materials Engineering and Performance

, Volume 24, Issue 9, pp 3407–3418 | Cite as

Micromechanical and Nanoscratch Behavior of SiCp Dispersed Metal Matrix Composites

  • Subhranshu Chatterjee
  • Sumit Chabri
  • Himel Chakraborty
  • Nandagopal Bhowmik
  • Arijit SinhaEmail author


Micromechanical response of silicon carbide particle dispersed Al/Mg/Ti/Cu composite, synthesized by powder metallurgy technique was investigated. A correlation between their microhardness and nanomechanical properties at submicron length scale was established. Hardening effect of SiC particles on the hardness, elastic modulus, recovery index, and plastic energy of the matrices was prominent and may be due to the interactions between geometrically necessary and statistically stored dislocations along with their impediment with dispersoids-matrix interface. The elastic recovery obtained from nanoscratch measurement was also correlated with the recovery parameter, which was derived from the nanoindentation of the composite compacts.


hardness metal matrix composites nanoindentation powder metallurgy scratch sintering 



The authors express their heartiest gratitude toward Prof. (Dr.) Partha Protim Chattopadhyay and Prof. (Dr.) Amitava Basu Mallick, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur for mentoring the work. The authors are also thankful to Dr. Malay Kundu, Scientific Officer, the School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur for assistance during SEM investigations.


  1. 1.
    T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, 1st ed., Cambridge University Press, Cambridge, 1993, p 3–5CrossRefGoogle Scholar
  2. 2.
    I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Particulate Reinforced Metal Matrix Composite—A Review, J. Mater. Sci., 1991, 26(5), p 1137–1156CrossRefGoogle Scholar
  3. 3.
    M.E. Smagorinski, P.G. Tsantrizos, S. Grenier, A. Cavasin, T. Brzezinski, and G. Kim, The Properties and Microstructure of Al-Based Composites Reinforced with Ceramic Particles, Mater. Sci. Eng. A, 1998, 244(1), p 86–90CrossRefGoogle Scholar
  4. 4.
    M.J. Tan and X. Zhang, Powder Metal Matrix Composites: Selection and Processing, Mater. Sci. Eng. A, 1998, 244(1), p 80–85CrossRefGoogle Scholar
  5. 5.
    A. Slipenyuk, V. Kuprin, Y. Milman, V. Goncharuk, and J. Eckert, Properties of P/M Processed Particle Reinforced Metal Matrix Composites Specified by Reinforcement Concentration and Matrix-to-Reinforcement Particle Size Ratio, Acta Mater., 2006, 54(1), p 157–166CrossRefGoogle Scholar
  6. 6.
    Z.Y. Liu, Q.Z. Wang, B.L. Xiao, and Z.Y. Ma, Clustering Model on the Tensile Strength of PM Processed SiCp/Al Composites, Compos. Part A, 2010, 41(11), p 1686–1692CrossRefGoogle Scholar
  7. 7.
    G. Requena, D.C. Yubero, J. Corrochano, J. Repper, and G. Garcés, Stress Relaxation During Thermal Cycling of Particle Reinforced Aluminium Matrix Composites, Compos. Part A, 2012, 43(11), p 1981–1988CrossRefGoogle Scholar
  8. 8.
    Th Schubert, A. Brendel, K. Schmid, Th Koeck, L. Ciupinski, W. Zielinski, T. Weißgarber, and B. Kieback, Interfacial Design of Cu/SiC Composites Prepared by Powder Metallurgy for Heat Sink Applications, Compos. Part A, 2007, 38(12), p 2398–2403CrossRefGoogle Scholar
  9. 9.
    J.K.M. Kwok and S.C. Lim, High Speed Tribological Properties of Al/SiC Composites: I, Frictional and Wear Rate Characteristics, Compos. Sci. Technol., 1999, 59(1), p 55–63CrossRefGoogle Scholar
  10. 10.
    M. El-Gallab and M. Sklad, Machining of Al/SiC Particulate Metal-Matrix Composites: Part II: Workpiece Surface Integrity, J. Mater. Process. Technol., 1998, 83(1–3), p 277–285CrossRefGoogle Scholar
  11. 11.
    M. El-Gallab and M. Sklad, Machining of Al/SiC Particulate Metal-Matrix Composites: Part I: Tool Performance, J. Mater. Process. Technol., 1998, 83(1–3), p 151–158CrossRefGoogle Scholar
  12. 12.
    B. Venkataraman and G. Sundararajan, The Sliding Wear Behaviour of Al/SiC Particulate Composites-I. Macrobehaviour, Acta Mater., 1996, 44(2), p 451–460CrossRefGoogle Scholar
  13. 13.
    S.C. Tjong and K.C. Lau, Tribological Behaviour of SiC Particle-Reinforced Copper Matrix Composites, Mater. Lett., 2000, 43(5–6), p 274–280CrossRefGoogle Scholar
  14. 14.
    Y. Zhan and G. Zhang, Friction and Wear Behavior of Copper Matrix Composites Reinforced with SiC and Graphite Particles, Tribol. Lett., 2004, 17(1), p 91–98CrossRefGoogle Scholar
  15. 15.
    B.W. Chua, L. Lu, and M.O. Lai, Influence of SiC Particles on Mechanical Properties of Mg based Composite, Compos. Struct., 1999, 47(1–4), p 595–601CrossRefGoogle Scholar
  16. 16.
    B. Inem and G. Pollard, Interface Structure and Fractography of a Magnesium-Alloy, Metal-Matrix Composite Reinforced with SiC Particles, J. Mater. Sci., 1993, 28(16), p 4427–4434CrossRefGoogle Scholar
  17. 17.
    M. Campo, A. Urena, and J. Rams, Effect of Silica Coatings on Interfacial Mechanical Properties in Aluminium-SiC Composites Characterized by Nanoindentation, Scr. Mater., 2005, 52(10), p 977–982CrossRefGoogle Scholar
  18. 18.
    D.R.P. Singh and N. Chawla, Scratch Resistance of Al/SiC Nanolaminates, J. Mater. Res., 2012, 27(1), p 278–283CrossRefGoogle Scholar
  19. 19.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRefGoogle Scholar
  20. 20.
    R. Liu, D.Y. Li, Y.S. Xie, R. Llewellyn, and H.M. Hawthorne, Indentation Behavior of Pseudoelastic TiNi alloy, Scr. Mater., 1999, 41(7), p 691–696CrossRefGoogle Scholar
  21. 21.
    N.K. Mukhopadhyay and P. Paufler, Micro- and Nanoindentation Techniques for Mechanical Characterization of Materials, Int. Mater. Rev., 2006, 51(4), p 209–245CrossRefGoogle Scholar
  22. 22.
    W.D. Nix and H. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, 1998, 46(3), p 411–425CrossRefGoogle Scholar
  23. 23.
    J.W. Hutchinson, Plasticity at the Micron Scale, Int. J. Solids Struct., 2000, 37(1–2), p 225–238CrossRefGoogle Scholar
  24. 24.
    N.I. Tymiak, D.E. Kramer, D.F. Bahr, T.J. Wyrobek, and W.W. Gerberich, Plastic Strain and Strain Gradients at Very Small Indentation Depths, Acta Mater., 2001, 49(6), p 1021–1034CrossRefGoogle Scholar
  25. 25.
    A.K. Chaubey, S. Scudino, N.K. Mukhopadhyay, M.S. Khoshkhoo, B.K. Mishra, and J. Eckert, Effect of Particle Dispersion on the Mechanical Behavior of Al-Based Metal Matrix Composites Reinforced with Nanocrystalline Al-Ca Intermetallics, J. Alloys Compd., 2012, 536(1), p S134–S137CrossRefGoogle Scholar
  26. 26.
    A. Upadhyaya and G.S. Upadhyaya, Sintering of Copper-Alumina Composites Through Blending and Mechanical Alloying Powder Metallurgy Routes, Mater. Des., 1995, 16(1), p 41–45CrossRefGoogle Scholar
  27. 27.
    M.F. Zawrah, H.A. Zayed, R.A. Essawy, A.H. Nassar, and M.A. Taha, Preparation by Mechanical Alloying, Characterization and Sintering of Cu-20 wt.% Al2O3 Nanocomposites, Mater. Des., 2013, 46, p 485–490CrossRefGoogle Scholar
  28. 28.
    H. Gao and Y. Huang, Geometrically Necessary Dislocation and Size-Dependent Plasticity, Scr. Mater., 2003, 48(2), p 113–118CrossRefGoogle Scholar
  29. 29.
    C.L. Chen, A. Richter, and R.C. Thomson, Mechanical Properties of Intermetallic Phases in Multi-component Al–Si Alloys Using Nanoindentation, Intermetallics, 2009, 17(8), p 634–641CrossRefGoogle Scholar
  30. 30.
    S.R. Bakshi, D. Lahiri, R.R. Patel, and A. Agarwal, Nanoscratch Behavior of Carbon Nanotube Reinforced Aluminum Coatings, Thin Solid Films, 2010, 518(6), p 1703–1711CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Subhranshu Chatterjee
    • 1
  • Sumit Chabri
    • 1
  • Himel Chakraborty
    • 2
  • Nandagopal Bhowmik
    • 1
  • Arijit Sinha
    • 2
    Email author
  1. 1.Department of Metallurgy and Materials EngineeringIndian Institute of Engineering Science and TechnologyHowrahIndia
  2. 2.School of Materials Science and EngineeringIndian Institute of Engineering Science and TechnologyHowrahIndia

Personalised recommendations