Mechanical Property of Pure Magnesium: From Orientation Perspective Pertaining to Deviation from Basal Orientation

  • S. K. Sahoo
  • R. K. Sabat
  • S. Panda
  • S. C. Mishra
  • S. Suwas


Pure magnesium is subjected to cold rolling followed by annealing at 200 °C to obtain near-equiaxed grains of average grain size ~15 µm. The hardness of different grains/orientations of the annealed samples is estimated through consecutive characterization by nanoindentation and electron backscattered diffraction. It is observed that an increase in deviation from basal orientation decreases the hardness of an orientation. Orientations <14° from basal orientation have higher hardness compared to orientations at 14° to 28° from basal orientations. Subsequently, the texture and microstructure of pure magnesium are tailored to examine the correlation between volume fractions of basal orientations with the bulk hardness of the samples. A direct relationship of hardness with the volume fraction of basal orientations is observed. Magnesium with higher volume fraction of basal orientations has higher hardness.


electron backscattered diffraction hardness magnesium nanoindentation orientation 



The authors would like to thank UGC NRC-M of IISc Bangalore for financial and experimental support. They would like to thank Prof. I. Samajdar to conduct some textural analysis at the National Facility on OIM & Texture, IIT Bombay. They would also like to thank Prof. P. Pant for helping nanoindentation measurement at Dept. of Metallurgical Engg. & Materials Sci., IIT Bombay.


  1. 1.
    B.L. Mordike and T. Ebert, Magnesium: Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45CrossRefGoogle Scholar
  2. 2.
    J. Xing, X. Yang, H. Miuna, and T. Sakai, Superplasticity of Magnesium Alloy AZ31 Processes by Severe Plastic Deformation, Mater. Trans., 2007, 48, p 1406–1411CrossRefGoogle Scholar
  3. 3.
    T. Mukai, H. Watanabe, K. Ishikawa, and K. Higashi, Guide for Enhancement of Room Temperature Ductility in Mg Alloys at High Strain Rates, Mater. Sci. Forum, 2003, 419–422, p 171–176CrossRefGoogle Scholar
  4. 4.
    S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, and P.K. Liaw, Texture Evolution of Five Wrought Magnesium Alloys during Route A Equal Channel Angular Extrusion: Experiments and Simulations, Acta Mater., 2005, 53, p 3135–3146CrossRefGoogle Scholar
  5. 5.
    S. Sandlobes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez, On the Role of Non-basal Deformation Mechanisms for the Ductility of Mg and Mg-Y Alloys, Acta Mater., 2011, 59, p 429–439CrossRefGoogle Scholar
  6. 6.
    S. Suwas, G. Gottstein, and R. Kumar, Evolution of Crystallographic Texture during Equal Channel Angular Extrusion (ECAE) and Its Effect on Secondary Processing of Magnesium, Mater. Sci. Eng. A, 2007, 471, p 1–14CrossRefGoogle Scholar
  7. 7.
    L. Capolungo, I.J. Beyerlein, and C.N. Tome, Slip-Assisted Twin Growth in Hexagonal Close-Packed Metals, Scripta Mater., 2009, 60, p 32–35CrossRefGoogle Scholar
  8. 8.
    S.R. Agnew, J.A. Horton, and M.H. Yoo, TEM Invesitgation of Dislocation Structures in Mg and Mg-Li a-Solid Solution Alloys, Metall. Mater. Trans. A, 2002, 33, p 851–858Google Scholar
  9. 9.
    M.H. Yoo and J.K. Lee, Deformation Twinning in h.c.p Metals and Alloys, Philos. Mag. A, 1991, 63, p 987–1000CrossRefGoogle Scholar
  10. 10.
    A. Jain and S.R. Agnew, Modeling the Temperature Dependent Effect of Twinning on the Behavior of Magnesium Alloy AZ31B Sheet, Mater. Sci. Eng. A, 2007, 462, p 29–36CrossRefGoogle Scholar
  11. 11.
    A. Chapuis and J.H. Driver, Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals, Acta Mater., 2011, 59, p 1986–1994CrossRefGoogle Scholar
  12. 12.
    L.L. Chang, Y.N. Wang, X. Zhao, and J.C. Huang, Microstructure and Mechanical Properties in an AZ31 Magnesium Alloy Sheet Fabricated by Asymmetric Hot Extrusion, Mater. Sci. Eng. A, 2008, 496, p 512–516CrossRefGoogle Scholar
  13. 13.
    N. Stanford and M.R. Barnett, The Origin of “Rare Earth” Texture Development in Extruded Mg-Based Alloys and its Effect on Tensile Ductility, Mater. Sci. Eng. A, 2008, 496, p 399–408CrossRefGoogle Scholar
  14. 14.
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065CrossRefGoogle Scholar
  15. 15.
    B. Beausir, S. Suwas, L.S. Tóth, K.W. Neale, and J.J. Fundenberger, Analysis of Texture Evolution in Magnesium During Equal Channel Angular Extrusion, Acta Mater., 2008, 56, p 200–214CrossRefGoogle Scholar
  16. 16.
    S.H. Kim, B.S. You, C.D. Yim, and Y.M. Seo, Texture and Microstructure Changes in Asymmetrically Hot Rolled AZ31 Magnesium Alloy Sheets, Mater. Lett., 2005, 59, p 3876–3880CrossRefGoogle Scholar
  17. 17.
    B. Beausir, S. Biswas, D. Kim, L.S. Toth, and S. Suwas, Analysis of Microstructure and Texture Evolution in Pure Magnesium During Symmetric and Asymmetric Rolling, Acta Mater., 2009, 57, p 5061–5077CrossRefGoogle Scholar
  18. 18.
    X. Gong, H. Li, S.B. Kang, J.H. Cho, and S. Li, Microstructure and Mechanical Properties of Twin-Roll Cast Mg-4.5Al-1.0Zn Sheets Processed by Differential Speed Rolling, Mater. Des., 2010, 31, p 1581–1587CrossRefGoogle Scholar
  19. 19.
    S.E. Ion, F.J. Humphreys, and S.H. White, Dynamic Recrystallization and the Development of Microstructure During the High Temperature Deformation of Magnesium, Acta. Mater., 1982, 30, p 1909–1919CrossRefGoogle Scholar
  20. 20.
    Y. Qiao, X. Wang, Z. Liu, and E. Wang, Effect of Temperature on Microstructures, Texture and Mechanical Properties of Hot Rolled Pure Mg Sheets, Mater. Sci. Eng. A, 2013, 568, p 202–205CrossRefGoogle Scholar
  21. 21.
    K. Pawlik and P. Ozga, LaboTex: The Texture Analysis Software, Göttinger Arbeiten zur Geologie und Paläontologie, SB4, 1999.Google Scholar
  22. 22.
    I. Groma and F. Szekely, Analysis of the Asymptotic Properties of X-ray Line Broadening Caused by Dislocations, J. Appl. Cryst., 2000, 33, p 1329–1334CrossRefGoogle Scholar
  23. 23.
    N. Rajmohan, Y. Hayakawa, J.A. Szpunar, and J.H. Root, Neutron Diffraction Method for Stored Energy Measurement in Interstitial Free Steel, Acta Mater., 1997, 45, p 2485–2494CrossRefGoogle Scholar
  24. 24.
    T. Mura, Micromechanics of Defects in Solids, Matrinus Nijhoff Publishers, Dordrecht, 1987, p 421–439CrossRefGoogle Scholar
  25. 25.
    Z. Zeng, Y. Zhang, and S. Jonsson, Microstructure and Texture Evolution of Commercial Pure Titanium Deformed at Elevated Temperatures, Mater. Sci. Eng. A, 2009, 513–514, p 83–90CrossRefGoogle Scholar
  26. 26.
    T.B. Britton, H. Liang, F.P.E. Dunne, and A.J. Wilkinson, The Effect of Crystal Orientation on the Indentation Response of Commercially Pure Titanium: Experiments and Simulations, Proc. R. Soc. A, 2010, 466, p 695–719CrossRefGoogle Scholar
  27. 27.
    G.B. Viswanathan, E. Lee, D.M. Maher, S. Banerjee, and H.L. Fraser, Direct Observations and Analyses of Dislocation Substructures in the α Phase of an α/β Ti-Alloy Formed by Nanoindentation, Acta Mater., 2005, 53, p 5101–5115CrossRefGoogle Scholar
  28. 28.
    F.K. Mante, G.R. Baran, and B. Lucas, Nanoindentation Studies of Titanium Single Crystals, Biomaterials, 1999, 20, p 1051–1055CrossRefGoogle Scholar
  29. 29.
    G. Nayyeri, W. J. Poole and C. W. Sinclair, Proc. 9th Int. Conf. Mg Alloys Appl., eds. W. J. Poole and K. U. Kainer, Vancouver, 2012, p 1325–1330.Google Scholar
  30. 30.
    R. Sanchez-Martin, M.T. Perez-Prado, J. Segurado, J. Bohlen, I. Gutierrez-Urrutia, J. Llorca, and J.M. Molina-Aldareguia, Measuring the Critical Resolved Shear Stresses in Mg Alloys by Instrumented Nanoindentation, Acta Mater., 2014, 71, p 283–292CrossRefGoogle Scholar
  31. 31.
    B. Selvarajou, J.H. Shin, T.K. Ha, I. Choi, S.P. Joshi, and H.N. Han, Orientation-Dependent Indentation Response of Magnesium Single Crystals: Modeling and Experiments, Acta Mater., 2014, 81, p 358–376CrossRefGoogle Scholar
  32. 32.
    H. Yoshinaga and R. Horiuchi, Deformation Mechanism in Magnesium Single Crystals Compressed in the Direction Parallel to Hexagonal Axis, Trans. JIM, 1963, 4, p 1–8Google Scholar
  33. 33.
    M.R. Barnett, Twinning and the Ductility of Magnesium Alloys: Part I, “Contraction” Twins, Mater. Sci. Eng. A, 2007, 464, p 1–7CrossRefGoogle Scholar
  34. 34.
    M.R. Barnett, Twinning and the Ductility of Magnesium Alloys: Part II, “Contraction” Twins, Mater. Sci. Eng. A, 2007, 464, p 8–16CrossRefGoogle Scholar
  35. 35.
    L. Meng, P. Yang, Q. Xie, and W. Mao, Analyses on Compression Twins in Magnesium, Mater. Trans., 2008, 49, p 710–714CrossRefGoogle Scholar
  36. 36.
    S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58, p 3247–3261CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • S. K. Sahoo
    • 1
  • R. K. Sabat
    • 2
  • S. Panda
    • 1
  • S. C. Mishra
    • 1
  • S. Suwas
    • 2
  1. 1.Department of Metallurgical & Materials EngineeringNIT RourkelaRourkelaIndia
  2. 2.Department of Materials EngineeringIISc BangaloreBangaloreIndia

Personalised recommendations