Analysis of Microstructure and Texture Evolution in Mg-3Al-1Zn Alloy Processed Through Groove Rolling

  • S. V. S. Narayana Murty
  • Niraj Nayan
  • R. Madhavan
  • S. C. Sharma
  • K. M. George
  • Satyam Suwas
Article

Abstract

The mechanism of grain refinement in a AZ31 Mg alloy subjected to hot groove rolling is investigated up to large strain (εt ~ 2.5). The alloy shows enhanced yield strength without compromising ductility. The change in strain path during rolling has resulted in significant weakening of basal texture. The microstructure analyses show that dynamic recrystallization (DRX) contributed significantly to grain refinement and hence to the observed mechanical properties. The combined effects of DRX and texture evolution on mechanical properties have been addressed.

Keywords

AZ31 alloy dynamic recrystallization groove rolling texture 

References

  1. 1.
    K.U. Kainer and F. Kaiser, Magnesium Alloys and Technology, Wiley, Weinheim, 2003CrossRefGoogle Scholar
  2. 2.
    M.M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Materials Park, 1999Google Scholar
  3. 3.
    P. Patridge, Magnesium Alloys and Its Applications, Metall. Rev., 1967, 118, p 169–178Google Scholar
  4. 4.
    K. Kubota, M. Mabuchi, and K. Higashi, Review Processing and Mechanical Properties of Fine-Grained Magnesium Alloys, J. Mater. Sci., 1999, 34(10), p 2255–2262CrossRefGoogle Scholar
  5. 5.
    S. Suwas, G. Gottstein, and R. Kumar, Evolution of Crystallographic Texture During Equal Channel Angular Extrusion (ECAE) and Its Effects on Secondary Processing of Magnesium, Mater. Sci. Eng. A, 2007, 471(1–2), p 1–14CrossRefGoogle Scholar
  6. 6.
    S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261CrossRefGoogle Scholar
  7. 7.
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51(7), p 2055–2065CrossRefGoogle Scholar
  8. 8.
    T. Mohri, M. Mabuchi, N. Saito, and M. Nakamura, Microstructure and Mechanical Properties of a Mg-4Y-3RE Alloy Processed by Thermo-Mechanical Treatment, Mater. Sci. Eng. A, 1998, 257(2), p 287–294CrossRefGoogle Scholar
  9. 9.
    T. Obara, H. Yoshinga, and S. Morozumi, {1122} <1123> Slip System in Magnesium, Acta Metall., 1973, 21(7), p 845–853CrossRefGoogle Scholar
  10. 10.
    J.F. Stohr and J.P. Poirier, Electron-Microscope Study of Pyramidal Slip 1122 <1123> in Mg, Philos. Mag., 1972, 25(6), p 1313–1329CrossRefGoogle Scholar
  11. 11.
    H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi, Low Temperature Superplasticity of a Fine-Grained ZK60 Magnesium Alloy Processed by Equal-Channel-Angular Extrusion, Scr. Mater., 2002, 46(12), p 851–856CrossRefGoogle Scholar
  12. 12.
    M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries, Acta Mater., 1999, 47(7), p 2047–2057CrossRefGoogle Scholar
  13. 13.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1976Google Scholar
  14. 14.
    M.H. Yoo, Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals, Metall. Trans. A, 1981, 12(3), p 409–418CrossRefGoogle Scholar
  15. 15.
    N. Ecob and B. Ralph, The Effect of Grain Size on Deformation Twinning in a Textured Zinc Alloy, J. Mater. Sci., 1983, 18(8), p 2419–2429CrossRefGoogle Scholar
  16. 16.
    M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49(19), p 4025–4039CrossRefGoogle Scholar
  17. 17.
    T. Mukai, T. Mohri, M. Mabuchi, M. Nakamura, K. Ishikawa, and K. Higashi, Experimental Study of a Structural Magnesium Alloy with High Absorption Energy Under Dynamic Loading, Scr. Mater., 1998, 39(9), p 1249–1253CrossRefGoogle Scholar
  18. 18.
    S.R. Agnew, M.H. Yoo, and C.N. Tome, Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y, Acta Mater., 2001, 49, p 4277–4289CrossRefGoogle Scholar
  19. 19.
    E. Yukutake, J. Kaneko, and M. Sugamata, Anisotropy and Non-uniformity in Plastic Behavior of AZ31 Magnesium Alloy Plates, Mater. Trans. JIM, 2003, 44(4), p 452–457CrossRefGoogle Scholar
  20. 20.
    M.Y. Huh, S.Y. Cho, and O. Engler, Randomization of the Annealing Texture in Aluminum 5182 Sheet by Cross-Rolling, Mater. Sci. Eng. A, 2001, 315(1), p 35–46CrossRefGoogle Scholar
  21. 21.
    S. Suwas and A.K. Singh, Role of Strain Path Change in Texture Development, Mater. Sci. Eng. A, 2003, 356(1), p 368–371CrossRefGoogle Scholar
  22. 22.
    N.P. Gurao, S. Sethuraman, and S. Suwas, Effect of Strain Path Change on the Evolution of Texture and Microstructure During Rolling of Copper and Nickel, Mater. Sci. Eng. A, 2011, 528(25), p 7739–7750CrossRefGoogle Scholar
  23. 23.
    N.P. Gurao, A. Ali, and S. Suwas, Study of Texture Evolution in Metastable β-Ti Alloy as a Function of Strain Path and Its Effect on α Transformation Texture, Mater. Sci. Eng. A, 2009, 504(1), p 24–35CrossRefGoogle Scholar
  24. 24.
    S.E. Ion, F.J. Humphreys, and S.H. White, Dynamic Recrystallisation and the Development of Microstructure During The High Temperature Deformation of Magnesium, Acta Metall., 1982, 30(10), p 1909–1919CrossRefGoogle Scholar
  25. 25.
    R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill, Physical Metallurgy Principles, Cengage Learning, Stamford, 2008Google Scholar
  26. 26.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 2004Google Scholar
  27. 27.
    A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, Electron Backscatter Diffraction in Materials Science, Springer, New York, 2009CrossRefGoogle Scholar
  28. 28.
    T. Al-Samman and G. Gottstein, Influence of Strain Path Change on the Rolling Behavior of Twin Roll Cast Magnesium Alloy, Scr. Mater., 2008, 59(7), p 760–763CrossRefGoogle Scholar
  29. 29.
    J. Bohlen, S.B. Yi, D. Letzig, and K.U. Kainer, Effect of Rare Earth Elements on the Microstructure and Texture Development in Magnesium–Manganese Alloys During Extrusion, Mater. Sci. Eng. A, 2010, 527, p 7092–7098CrossRefGoogle Scholar
  30. 30.
    S. Biswas, S. Suwas, R. Sikand, and A.K. Gupta, Analysis of Texture Evolution in Pure Magnesium and the Magnesium Alloy AM30 During Rod and Tube Extrusion, Mater. Sci. Eng. A, 2011, 528(10), p 3722–3729CrossRefGoogle Scholar
  31. 31.
    T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 2008, 490(1), p 411–420CrossRefGoogle Scholar
  32. 32.
    A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49(7), p 1199–1207CrossRefGoogle Scholar
  33. 33.
    S. Biswas, D.-I. Kim, and S. Suwas, Asymmetric and Symmetric Rolling of Magnesium: Evolution of Microstructure, Texture and Mechanical Properties, Mater. Sci. Eng. A, 2012, 550, p 19–30CrossRefGoogle Scholar
  34. 34.
    S. Biswas and S. Suwas, Evolution of Sub-Micron Grain Size and Weak Texture in Magnesium Alloy Mg–3Al–0.4Mn by a Modified Multi-axial Forging Process, Scr. Mater., 2012, 66(2), p 89–92CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • S. V. S. Narayana Murty
    • 1
  • Niraj Nayan
    • 1
  • R. Madhavan
    • 2
  • S. C. Sharma
    • 1
  • K. M. George
    • 1
  • Satyam Suwas
    • 2
  1. 1.Materials and Metallurgy Group, Materials and Mechanical Engineering EntityVikram Sarabhai Space CenterTrivandrumIndia
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations