Advertisement

Journal of Materials Engineering and Performance

, Volume 24, Issue 4, pp 1441–1451 | Cite as

Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test

  • Dongmei Ji
  • Lai-Chang Zhang
  • Jianxing Ren
  • Dexian Wang
Article

Abstract

This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.

Keywords

creep-fatigue P92 steel plastic strain ratcheting stress-strain hysteresis loop 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51201097).

References

  1. 1.
    R. Viswanathan and W.T. Bakker, Materials for Ultra-Supercritical Coal Power Plants—Boiler Materials: Part 1, J. Mater. Eng. Perform., 2001, 10, p 81–100CrossRefGoogle Scholar
  2. 2.
    Y. Takahashi, Study on Creep-Fatigue Evaluation Procedures for High Chromium Steels—Part II: Sensitivity to Calculated Deformation, Int. J. Press. Vessels Pip., 2008, 85, p 423–440CrossRefGoogle Scholar
  3. 3.
    H. Xiao, X.Y. Li, Y. Hu, F. Guo, and Y.W. Shi, Damage Behavior of SnAgCu/Cu Solder Joints Subjected to Thermomechanical Cycling, J. Alloys Compd., 2013, 578, p 110–117CrossRefGoogle Scholar
  4. 4.
    B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, and A. Pineau, Creep-Fatigue-Oxidation Interactions in a 9Cr-1Mo Martensitic Steel. Part I: Effect of Tensile Holding Period on Fatigue Lifetime, Int. J. Fatigue, 2008, 30, p 649–662CrossRefGoogle Scholar
  5. 5.
    B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, and A. Pineau, Creep-Fatigue-Oxidation Interactions in a 9Cr-1Mo Martensitic Steel. Part II: Study of the Influence of Creep and Stress Relaxation Holding Times on Cyclic Behavior, Int. J. Fatigue, 2008, 30, p 663–676CrossRefGoogle Scholar
  6. 6.
    B. Fournier, S. Maxime, C. Caës, N. Michel, R. Véronique, B. Annick, and P. André, High Temperature Creep-Fatigue-Oxidation Interactions in 9-12%Cr Martensitic Steels, J. Nucl. Mater., 2009, 385, p 418–421CrossRefGoogle Scholar
  7. 7.
    B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, J. Man, O. Gillia, P. Lemoine, and A. Pineau, Creep-Fatigue-Oxidation Interactions in a 9Cr-1Mo Martensitic Steel. Part III: Lifetime Prediction, Int. J. Fatigue, 2008, 30, p 1797–1812CrossRefGoogle Scholar
  8. 8.
    B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, L. Allais, I. Tournie, and A. Pineau, Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part I. Mechanical Test Results, Metall. Mater. Trans. A, 2009, 40, p 321–329CrossRefGoogle Scholar
  9. 9.
    B. Fournier, M. Salvi, F. Dalle, Y. De Carlan, C. Caës, M. Sauzay, and A. Pineau, Lifetime Prediction of 9-12%Cr Martensitic Steels Subjected to Creep-Fatigue at High Temperature, Int. J. Fatigue, 2010, 32, p 971–978CrossRefGoogle Scholar
  10. 10.
    Y. Takahashi, Study on Creep-Fatigue Evaluation Procedures for High-Chromium Steels—Part I: Test Results and Life Prediction Based on Measured Stress Relaxation, Int. J. Press. Vessels Pip., 2008, 85, p 406–422CrossRefGoogle Scholar
  11. 11.
    Y.L. Hao, “Research on Creep Characteristic and Creep-Fatigue Interaction of P91 Steel”. Thesis, Xi Nan Jiaotong University, 2005Google Scholar
  12. 12.
    V. Shankar, M. Valsan, K.B. Sankara, and S.D. Pathak, Low Cycle Fatigue Behavior and Microstructural Evolution of Modified 9Cr-1Mo Ferritic Steel, Mater. Sci. Eng., A, 2006, 437, p 413–422CrossRefGoogle Scholar
  13. 13.
    P. Zhao and F.-Z. Xuan, Ratchetting Behavior of Advanced 9-12% Chromium Ferrite Steel Under Creep-Fatigue Loadings, Mech. Mater., 2011, 43, p 299–312CrossRefGoogle Scholar
  14. 14.
    G.D. Zhang, Y.F. Zhao, F. Xue, J.N. Mei, Z.X. Wang, C.Y. Zhou, and L. Zhang, Creep-Fatigue Interaction Damage Model and Its Application in Modified 9Cr-1Mo Steel, Nucl. Eng. Des., 2011, 241, p 4586–4861Google Scholar
  15. 15.
    S. Kim and J.R. Weertman, Investigation of Microstructural Changes in a Ferritic Steel Caused by High Temperature Fatigue, Metall. Trans. A, 1988, 19, p 999–1007CrossRefGoogle Scholar
  16. 16.
    S.R. Holdsworth, Creep-Fatigue Properties of High Temperature Turbine Steels, Mater. High Temp., 2001, 18(18), p 261–265CrossRefGoogle Scholar
  17. 17.
    K. Aoto, R. Komine, F. Ueno, H. Kawasaki, and Y. Wada, Creep-Fatigue Evaluation of Normalized and Tempered Modified 9Cr-1Mo, Nucl. Eng. Des., 1994, 153, p 97–110CrossRefGoogle Scholar
  18. 18.
    T. Sugiura, A. Ishikawa, T. Nakamura, and Y. Asada, Formulation of Air Environmental Effect on Creep-Fatigue Interaction, Nucl. Eng. Des., 1994, 153, p 87–95CrossRefGoogle Scholar
  19. 19.
    M. Kouichi, K. Sawada, and J. Koike, Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, ISIJ Int., 2001, 41, p 641–653CrossRefGoogle Scholar
  20. 20.
    H. Cerjak, P. Hofer, and B. Schaffern, The Influence of Microstructural Aspects on the Service Behaviour of Advanced of Power Plant Steels, ISIJ Int., 1999, 39, p 874–888CrossRefGoogle Scholar
  21. 21.
    P.J. Ennis, A. Zielinska-Lipiee, O. Wachter, and A. Czyraka-Filemonowicz, Microstructural Stability and Creep Rupture Strength of the Martensitic Steel P92 for Advanced Power Plant, Acta Mater., 1997, 45, p 4901–4907CrossRefGoogle Scholar
  22. 22.
    K. Sawada, H. Kushima, K. Kimura, and M. Tabuchi, TTP Diagrams of Z Phase in 9-12% Cr Heat-Resistant Steels, ISIJ Int., 2007, 47, p 733–739CrossRefGoogle Scholar
  23. 23.
    K. Sawada, K. Kubo, and F. Abe, Creep Behavior and Stability of MX Precipitates at High Temperature in 9C r-0. 5Mo-1.8W-VNb Steel, Mater. Sci. Eng. A, 2001, 319–321, p 784–787CrossRefGoogle Scholar
  24. 24.
    G.Z. Kang, Ratchetting: Recent Progresses in Phenomenon Observation, Constitutive Modeling and Application, Int. J. Fatigue, 2008, 30, p 1448–1472CrossRefGoogle Scholar
  25. 25.
    X.T. Zheng, F.-Z. Xuan, and P. Zhao, Ratcheting-Creep Interaction of Advanced 9-12% Chromium Ferrite Steel with Anelastic Effect, Int. J. Fatigue, 2011, 33, p 1286–1291CrossRefGoogle Scholar
  26. 26.
    S.Q. Zhang, S.J. Li, M.T. Jia, F. Prima, L.J. Chen, Y.L. Hao, and R. Yang, Low-Cycle Fatigue Properties of a Titanium Alloy Exhibiting Nonlinear Elastic Deformation Behavior, Acta Mater., 2011, 59, p 4690–4699CrossRefGoogle Scholar
  27. 27.
    S.Q. Zhang, S.J. Li, M.T. Jia, Y.L. Hao, and R. Yang, Fatigue Properties of a Multifunctional Titanium Alloy Exhibiting Nonlinear Elastic Deformation Behavior, Scripta Mater., 2009, 60, p 733–736CrossRefGoogle Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • Dongmei Ji
    • 1
  • Lai-Chang Zhang
    • 2
  • Jianxing Ren
    • 1
  • Dexian Wang
    • 1
  1. 1.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.School of EngineeringEdith Cowan UniversityPerthAustralia

Personalised recommendations