Advertisement

Aluminum-Based Cast In Situ Composites: A Review

  • S. L. Pramod
  • Srinivasa R. Bakshi
  • B. S. MurtyEmail author
Article

Abstract

In situ composites are a class of composite materials in which the reinforcement is formed within the matrix by reaction during the processing. In situ method of composite synthesis has been widely followed by researchers because of several advantages over conventional stir casting such as fine particle size, clean interface, and good wettability of the reinforcement with the matrix and homogeneous distribution of the reinforcement compared to other processes. Besides this, in situ processing of composites by casting route is also economical and amenable for large scale production as compared to other methods such as powder metallurgy and spray forming. Commonly used reinforcements for Al and its alloys which can be produced in situ are Al2O3, AlN, TiB2, TiC, ZrB2, and Mg2Si. The aim of this paper is to review the current research and development in aluminum-based in situ composites by casting route.

Keywords

Al2O3 AMC casting in situ composites TiB2 TiC Mg2Si MMC 

References

  1. 1.
    A. Mandal, N. Chippa, K. Jayasankar, and P.S. Mukherjee, Effect of High Magnesium Content on Microstructure of Al-7Si Alloy, Mater. Lett., 2014, 117, p 168–170Google Scholar
  2. 2.
    S. Fale, A. Likhite, and J. Bhatt, The Wear Behavior of In situ Al-AlN Metal Matrix Composites, Trans. Indian Inst. Met., 2014, 67, p 841–849Google Scholar
  3. 3.
    X. Wu and G. Zhang, Microstructure and Dry Sliding Wear Behavior of Cast Al-Mg2Si In-Situ Metal Matrix Composite Modified by Nd, Rare Met., 2013, 32, p 284–289Google Scholar
  4. 4.
    C.J. Song, Z.M. Xu, G. Liang, and J.G. Li, Study of In-Situ Al/Mg2Si Functionally Graded Materials by Electromagnetic Separation Method, Mater. Sci. Eng. A, 2006, 424, p 6–16Google Scholar
  5. 5.
    P. Li, E.G. Kandalova, and V.I. Nikitin, In Situ Synthesis of Al-TiC in Aluminum Melt, Mater. Lett., 2005, 59, p 2545–2548Google Scholar
  6. 6.
    H. Wang, G. Li, Y. Zhao, and G. Chen, In Situ Fabrication and Microstructure of Al2O3 Particles Reinforced Aluminum Matrix Composites, Mater. Sci. Eng. A, 2010, 527, p 2881–2885Google Scholar
  7. 7.
    M.F. Najafabadi, M.A. Golozar, A. Saidi, and H. Edris, Wear Behaviour of Aluminium Matrix TiB2 Composite Prepared by In Situ Processing, Mater. Sci. Technol., 2014, 19, p 1531–1532Google Scholar
  8. 8.
    K. Niranjan and P.R. Lakshminarayanan, Dry Sliding Wear Behaviour of In Situ Al-TiB2 Composites, Mater. Des., 2013, 47, p 167–173Google Scholar
  9. 9.
    N. Soltani, H.R.J. Nodooshan, A. Bahrami, M.I. Pech-canul, W. Liu, and G. Wu, Effect of Hot Extrusion on Wear Properties of Al-15 wt.% Mg2Si In Situ Metal Matrix Composites, Mater. Des., 2014, 53, p 774–781Google Scholar
  10. 10.
    S. Zhang, Y. Zhao, G. Chen, X. Cheng, and X. Huo, Fabrication and Dry Sliding Wear Behavior of In Situ Al-K 2ZrF6-KBF4 Composites Reinforced by Al3Zr and ZrB2 Particles, J. Alloys Compd., 2008, 450, p 185–192Google Scholar
  11. 11.
    S. Kumar, V. Subramanya Sarma, and B.S. Murty, Effect of Temperature on the Wear Behavior of Al-7Si-TiB2 In-Situ Composites, Metall. Mater. Trans. A, 2008, 40, p 223–231Google Scholar
  12. 12.
    A. Mandal, B.S. Murty, and M. Chakraborty, Sliding Wear Behaviour of T6 Treated A356-TiB2 In-Situ Composites, Wear, 2009, 266, p 865–872Google Scholar
  13. 13.
    A. Mandal, M. Chakraborty, and B.S. Murty, Effect of TiB2 Particles on Sliding Wear Behaviour of Al-4Cu Alloy, Wear, 2007, 262, p 160–166Google Scholar
  14. 14.
    J. Zhang, Z. Fan, Y. Wang, and B. Zhou, Microstructure and Mechanical Properties of In Situ Al-Mg2Si Composites, Scripta Mater., 2000, 16, p 913–918Google Scholar
  15. 15.
    B. Basu and K. Balani, Advanced Structural Ceramics, Wiley, New York, 2011, ISBN 978-1-118-03729-4Google Scholar
  16. 16.
    C. Barry Carter and M. Grant Norton, Ceramic Materials, Springer, New York, 2013, ISBN 978-1-4614-3523-5Google Scholar
  17. 17.
    P. Davies, J.L.F. Kellie, D.P. Parton, London and Scandinavian, Co. Ld., Patent, 1993, WO 93/05189.Google Scholar
  18. 18.
    A. Mandal, M. Chakraborty, and B.S. Murty, Ageing Behaviour of A356 Alloy Reinforced with In-Situ Formed TiB2 Particles, Mater. Sci. Eng. A, 2008, 489, p 220–226Google Scholar
  19. 19.
    S. Lakshmi, L. Lu, and M. Gupta, In Situ Preparation of TiB2 Reinforced Al Based Composites, J. Mater. Pro. Tech., 1997, 73, p 160–166Google Scholar
  20. 20.
    S. Kumar, M. Chakraborty, V. Subramanya Sarma, and B.S. Murty, Tensile and Wear Behaviour of In Situ Al-7Si/TiB2 Particulate Composites, Wear, 2008, 265, p 134–142Google Scholar
  21. 21.
    N. Charbhai, B.S. Murty, and S. Sankaran, Characterization of Microstructure and Precipitation Behavior in Al-4Cu-xTiB2 In-Situ Composite, Trans. Indian Inst. Met., 2011, 64, p 117–121Google Scholar
  22. 22.
    S.H. Nandam, S. Sankaran, and B.S. Murty, Precipitation Kinetics in Al-Si-Mg/TiB2 In-Situ Composites, Trans. Indian Inst. Met., 2011, 64, p 123–126Google Scholar
  23. 23.
    G.S. Vinod Kumar, B.S. Murty, and M. Chakraborty, Development of Al-Ti-C Grain Refiners and Study of Their Grain Refining Efficiency on Al and Al-7Si Alloy, J. Alloys Compd., 2005, 396, p 143–150Google Scholar
  24. 24.
    S. Kumar, V.S. Sarma, and B.S. Murty, Influence of In Situ Formed TiB2 Particles on the Abrasive Wear Behaviour of Al-4Cu Alloy, Mater. Sci. Eng. A, 2007, 465, p 160–164Google Scholar
  25. 25.
    S. Kumar, V. Subramanya Sarma, and B.S. Murty, A Statistical Analysis on Erosion Wear Behaviour of A356 Alloy Reinforced with In Situ Formed TiB2 Particles, Mater. Sci. Eng. A, 2008, 476, p 333–340Google Scholar
  26. 26.
    K.R. Ravi, M. Saravanan, R.M. Pillai, A. Mandal, B.S. Murty, M. Chakraborty, and B.C. Pai, Equal Channel Angular Pressing of Al-5 wt.%TiB2 In Situ Composite, J. Alloys Compd., 2008, 459, p 239–243Google Scholar
  27. 27.
    S. Kumar, V. Subramaniya Sarma, and B.S. Murty, Functionally Graded Al Alloy Matrix In-Situ Composites, Metall. Mater. Trans. A, 2009, 41, p 242–254Google Scholar
  28. 28.
    S. Kumar, V. Subramaniya Sarma, and B.S. Murty, The Influence of Room Temperature and Cryogenic Temperature Rolling on the Aging and Wear Behaviour of Al-4Cu-5TiB2 In Situ Composites, J. Alloys Compd., 2009, 479, p 268–273Google Scholar
  29. 29.
    A. Mandal, B.S. Murty, and M. Chakraborty, Wear Behaviour of Near Eutectic Al-Si Alloy Reinforced with In-Situ TiB2 Particles, Mater. Sci. Eng. A, 2009, 506, p 27–33Google Scholar
  30. 30.
    S. Kumar, V.S. Sarma, and B.S. Murty, High Temperature Wear Behavior of Al-4Cu-TiB2 In Situ Composites, Wear, 2010, 268, p 1266–1274Google Scholar
  31. 31.
    Y. Zhang, N. Ma, H. Wang, Y. Le, and X. Li, Damping Capacity of In Situ TiB2 Particulates Reinforced Aluminium Composites with Ti Addition, Mater. Des., 2007, 28, p 628–632Google Scholar
  32. 32.
    Y. Zhang, N. Ma, and H. Wang, Effect of particulate/Al interface on the damping behavior of in situ TiB2 reinforced aluminium composite, Mater. Lett., 2007, 61, p 3273–3275Google Scholar
  33. 33.
    R. Shobha, K.R. Suresh, H.B. Niranjan, and K.G. Satyanarayana, Achieving Enhanced Mechanical Properties and Analysis of Chemical Kinetics of the In-Situ Reaction in an Al-TiB2 In-situ Composite, Adv. Mater. Res., 2010, 131, p 1385–1388Google Scholar
  34. 34.
    H.B.M. Rajan, S. Ramabalan, I. Dinaharan, and S.J. Vijay, Effect of TiB2 Content and Temperature on Sliding Wear Behavior of AA7075 / TiB2 In Situ Aluminum Cast Composites, Arch. Civ. Mech. Eng., 2014, 14, p 72–79Google Scholar
  35. 35.
    M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of In-Situ TiB2/A356 Composites, Mater. Sci. Eng. A, 2014, 590, p 246–254Google Scholar
  36. 36.
    Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, and L. Gao, Development of TiB2 Reinforced Aluminum Foundry Alloy Based In Situ Composites: Part I: An Improved Halide Salt Route to Fabricate Al-5 wt.%TiB2 Master Composite, Mater. Sci. Eng. A, 2014, 605, p 301–309Google Scholar
  37. 37.
    J. Yao, S. Zhong, Z. Lei, and Z. Huoping, Mechanical Properties of Al-Si Alloy Based Composites Reinforced by In-Situ TiB2 Particles, Adv. Mater. Res., 2010, 105106, p 126–129Google Scholar
  38. 38.
    N.L. Yue, L. Lu, and M.O. Lai, Application of Thermodynamic Calculation in the In-Situ Process of Al/TiB2, Compos. Struct., 1999, 47, p 691–694Google Scholar
  39. 39.
    B. Yang, Y.Q. Wang, and B.L. Zhou, The Mechanism of Formation of TiB2 Particulates Prepared by In Situ Reaction in Molten Aluminum, Met. Mater. Trans. B, 1998, 29, p 635–640Google Scholar
  40. 40.
    D. Zhao, X. Liu, Y. LiU, and X. Bian, In Situ Preparation of Al Matrix Composites Reinforced by TiB2 Particles and Sub-micron ZrB2, J. Mater. Sci., 2005, 40, p 4365–4368Google Scholar
  41. 41.
    L. Lu, M. La, and F.L. Chen, Al-4 wt% Cu Composite Reinforced with In-Situ TiB2 Particles, Acta Mater., 1997, 45, p 4297–4309Google Scholar
  42. 42.
    Z.Y. Chen, Y.Y. Chen, Q. Shu, and G.Y. An, Solidification and Interfacial Structure of In Situ Al-4.5Cu/TiB2 Composite, J. Mater. Sci., 2000, 5, p 5605–5608Google Scholar
  43. 43.
    A. Mandal, R. Maiti, M. Chakraborty, and B.S. Murty, Effect of TiB2 Particles on Aging Response of Al-4Cu Alloy, Mater. Sci. Eng. A, 2004, 386, p 296–300Google Scholar
  44. 44.
    C.F. Feng and L. Froyen, Microstructures of In Situ Al/TiB2 MMCs Prepared, J. Mater. Sci., 2000, 5, p 837–850Google Scholar
  45. 45.
    B.S. Murty, R. Maiti, and M. Chakraborty, Development of In-Situ Al-TiB2 Metal Matrix Composites, J. Met. Mater. Sci., 2001, 43, p 93–101Google Scholar
  46. 46.
    K.L. Tee, L. Lu, and M.O. Lai, In Situ Processing of Al-TiB2 Composite by the Stir-Casting Technique, J. Mater. Proc. Tech., 1999, 90, p 513–519Google Scholar
  47. 47.
    K.L. Tee, L. Lu, and M.O. Lai, In Situ Stir Cast Al-TiB2 Composite: Processing and Mechanical Properties, Mater. Sci. Tech., 2001, 17, p 201–206Google Scholar
  48. 48.
    K.L. Tee, L. Lu, and M.O. Lai, Synthesis of In Situ Al-TiB2 Composites Using Stir Cast Route, Compos. Struct., 2000, 47, p 589–593Google Scholar
  49. 49.
    A. Changizi, A. Kalkanli, and N. Sevinc, Production of In Situ Aluminum: Titanium Diboride Master Alloy Formed by Slag-Metal Reaction, J. Alloys Compd., 2011, 509, p 237–240Google Scholar
  50. 50.
    L. Anestiev, L. Froyen, and L.V.A.N. Vugt, Kirkendall Effect in Liquid During the In Situ Processing of Metal Matrix Composites Under Micro-gravity Conditions, J. Mater. Sci., 2002, 7, p 1907–1913Google Scholar
  51. 51.
    M.F. Forster, R.W. Hamilton, R.J. Dashwood, and P.D. Lee, Centrifugal Casting of Aluminium Containing In Situ Formed TiB2, Mater. Sci. Technol., 2003, 19, p 1215–1219Google Scholar
  52. 52.
    C. Dengbin, Z. Yutao, L.I. Guirong, Z. Meng, and C. Gang, Mechanism and Kinetic Model of In-situ TiB2/7055Al Nanocomposites Synthesized Under High Intensity Ultrasonic Field, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2011, 26, p 920–925Google Scholar
  53. 53.
    C.S. Ramesh, A. Ahamed, B.H. Channabasappa, and R. Keshavamurthy, Development of Al 6063-TiB2 In Situ Composites, Mater. Des., 2010, 31, p 2230–2236Google Scholar
  54. 54.
    Z. Liu, Q. Han, J. Li, and W. Huang, Effect of Ultrasonic Vibration on Microstructural Evolution of the Reinforcements and Degassing of In Situ TiB2p/Al-12Si-4Cu Composites, J. Mater. Process. Technol., 2012, 212, p 365–371Google Scholar
  55. 55.
    T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, and L. Gao, Development of TiB2 Reinforced Aluminum Foundry Alloy Based In Situ Composites: Part II: Enhancing the Practical Aluminum Foundry Alloys Using the Improved Al-5 wt.%TiB2 Master Composite Upon Dilution, Mater. Sci. Eng. A, 2014, 605, p 22–32Google Scholar
  56. 56.
    I.G. Siddhalingeshwar, M.A. Herbert, M. Chakraborty, and R. Mitra, Effect of Mushy State Rolling on Age-Hardening and Tensile Behavior of Al-4.5Cu Alloy and In Situ Al-4.5Cu-5TiB2 Composite, Mater. Sci. Eng. A, 2011, 528, p 1787–1798Google Scholar
  57. 57.
    M.A. Herbert, C. Sarkar, R. Mitra, and M. Chakraborty, Microstructural Evolution, Hardness, and Alligatoring in the Mushy State Rolled Cast Al-4.5Cu Alloy and In-Situ Al4.5Cu-5TiB2 Composite, Metall. Mater. Trans. A, 2007, 38, p 2110–2126Google Scholar
  58. 58.
    J. Xue, J. Wang, Y.F. Han, and B.D. Sun, Wear Behaviour of Squeeze-Cast Al 2014 Alloy and In-Situ 5 vol% TiB2/2014 Composite, Mater. Trans., 2014, 53, p 2119–2128Google Scholar
  59. 59.
    H. Yi, N. Ma, X. Li, Y. Zhang, and H. Wang, High-Temperature Mechanics Properties of In Situ TiB2p Reinforced Al-Si Alloy Composites, Mater. Sci. Eng. A, 2006, 419, p 12–17Google Scholar
  60. 60.
    D.G. Zhao, X.F. Liu, Y.C. Pan, Y.X. Liu, and X.F. Bian, Microstructure and Mechanical Behavior of AlSiCuMgNi Piston Alloys Reinforced with TiB2, J. Mater. Sci., 2006, 41, p 4227–4232Google Scholar
  61. 61.
    C.S. Ramesh, S. Pramod, and R. Keshavamurthy, A Study on Microstructure and Mechanical Properties of Al 6061-TiB2 In-Situ Composites, Mater. Sci. Eng. A, 2011, 528, p 4125–4132Google Scholar
  62. 62.
    F. Wang, N. Ma, Y. Li, X. Li, and H. Wang, Impact Behavior of In Situ TiB2/Al Composite at Various Temperatures, J. Mater. Sci., 2011, 46, p 5192–5196Google Scholar
  63. 63.
    F. Wang, J. Xu, J. Li, X. Li, and H. Wang, Fatigue Crack Initiation and Propagation in A356 Alloy Reinforced with In Situ TiB2 Particles, Mater. Des., 2012, 33, p 236–241Google Scholar
  64. 64.
    Y. Zhang, N. Ma, H. Wang, Y. Le, and S. Li, Effect of Ti on the Damping Behavior of Aluminum Composite Reinforced with In Situ TiB2 Particulate, Scripta Mater., 2005, 53, p 1171–1174Google Scholar
  65. 65.
    K. Sivaprasad, S.P.K. Babu, S. Natarajan, R. Narayanasamy, B.A. Kumar, and G. Dinesh, Study on Abrasive and Erosive Wear Behaviour of Al 6063/TiB2 In Situ Composites, Mater. Sci. Eng. A, 2008, 498, p 495–500Google Scholar
  66. 66.
    S. Natarajan, R. Narayanasamy, S.P. Kumaresh Babu, G. Dinesh, B. Anil Kumar, and K. Sivaprasad, Sliding Wear Behaviour of Al 6063/TiB2 In Situ Composites at Elevated Temperatures, Mater. Des., 2009, 30, p 2521–2531Google Scholar
  67. 67.
    C.S. Ramesh and A. Ahamed, Friction and Wear Behaviour of Cast Al 6063 Based In Situ Metal Matrix Composites, Wear, 2011, 271, p 1928–1939Google Scholar
  68. 68.
    Y. Birol, In Situ Synthesis of Al-TiCp Composites by Reacting K2TiF6 and Particulate Graphite in Molten Aluminium, J. Alloys Compd., 2008, 454, p 110–117Google Scholar
  69. 69.
    R. Bauri, Synthesis of Al-TiC In-Situ Composites: Effect of Processing Temperature and Ti:C Ratio, Trans. Indian Inst. Met., 2009, 62, p 391–395Google Scholar
  70. 70.
    A. Sharma, Synthesis of TiC Composite by Salt Route and Grain Refinement of Aluminium Alloy, Int. J. Cast Metals Res., 2008, 21, p 226–230Google Scholar
  71. 71.
    B. Sirahbizu, D. Venkateswarlu, M.M. Mahapatra, P.K. Jha, and N.R. Mandal, On Friction Stir Butt Welding of Al-12Si/10 wt% TiC In Situ Composite, Mater. Des., 2014, 54, p 1019–1027Google Scholar
  72. 72.
    R.N. Rai, A.K.P. Rao, G.L. Dutta, and M. Chakraborty, Forming Behaviour of Al-TiC In-situ Composites, Mater. Sci. Forum, 2013, 765, p 418–422Google Scholar
  73. 73.
    P. Sahoo and M.J. Koczak, Analysis of In Situ Formation of Titanium Carbide in Aluminum Alloys, Mater. Sci. Eng. A, 1991, 144, p 37–44Google Scholar
  74. 74.
    F. Wang, H. Liu, and B. Yang, Effect of In-Situ TiC Particulate on the Wear Resistance of Spray-Deposited 7075 Al Matrix Composite, Mater. Char., 2005, 54, p 446–450Google Scholar
  75. 75.
    Y. Cho, J. Lee, H. Kim, J. Kim, and S. Kim, Feasible Process for Producing In Situ Al/TiC Composites by Combustion Reaction in an Al Melt, Met. Mater. Int., 2013, 19, p 1109–1116Google Scholar
  76. 76.
    B. Yang, F. Wang, H. Cui, X.J. Duan, S.C. Hu, and J.S. Zhang, TiC Particulate-Reinforced Al-20Si-5Fe Composite Fabricated by Melt In Situ Reaction Spray Forming, J. Mater Proc. Technol., 2003, 137, p 187–190Google Scholar
  77. 77.
    Y.F. Liang, J.E. Zhou, and S.Q. Dong, Microstructure and Tensile Properties of In Situ TiCp/Al-4.5 wt.% Cu Composites Obtained by Direct Reaction Synthesis, Mater. Sci. Eng. A, 2010, 527, p 7955–7960Google Scholar
  78. 78.
    Z. Liu, X. Wang, and Q. Han, Synthesis of Submicrometer-Sized TiC Particles in Aluminum Melt at Low Melting Temperature, J. Mater. Res., 2014, 29, p 896–901Google Scholar
  79. 79.
    R. Tyagi, Synthesis and Tribological Characterization of In Situ Cast Al-TiC Composites, Wear, 2005, 259, p 569–576Google Scholar
  80. 80.
    A. Kumar, P.K. Jha, and M.M. Mahapatra, Abrasive Wear Behavior of In Situ TiC Reinforced with Al-4.5%Cu Matrix, J. Mater. Eng. Perf., 2014, 23, p 743–752Google Scholar
  81. 81.
    A. Kumar, M.M. Mahapatra, and P.K. Jha, Modeling the Abrasive Wear Characteristics of In-Situ Synthesized Al-4.5% Cu/TiC Composites, Wear, 2013, 306, p 170–178Google Scholar
  82. 82.
    R.N. Rai, G.L. Datta, M. Chakraborty, and A.B. Chattopadhyay, A Study on the Machinability Behaviour of Al-TiC Composite Prepared by In Situ Technique, Mater. Sci. Eng. A, 2006, 428, p 34–40Google Scholar
  83. 83.
    K. Tian, Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, and X. Wu, Effects of In Situ Generated ZrB2 Nano-particles on Microstructure and Tensile Properties of 2024Al Matrix Composites, J. Alloys Compd., 2014, 594, p 1–6Google Scholar
  84. 84.
    I. Dinaharan, N. Murugan, and S. Parameswaran, Influence of In Situ Formed ZrB2 Particles on Microstructure and Mechanical Properties of AA6061 Metal Matrix Composites, Mater. Sci. Eng. A, 2011, 528, p 5733–5740Google Scholar
  85. 85.
    S. Zhang, Y. Zhao, G. Chen, and X. Cheng, Microstructures and Dry Sliding Wear Properties of In Situ (Al3Zr + ZrB2)/Al Composites, J. Mater. Proc. Technol., 2007, 184, p 201–208Google Scholar
  86. 86.
    G.N. Kumar, R. Narayanasamy, S. Natarajan, S.P.K. Babu, K. Sivaprasad, and S. Sivasankaran, Dry Sliding Wear Behaviour of AA 6351-ZrB2 In Situ Composite at Room Temperature, Mater. Des., 2010, 31, p 1526–1532Google Scholar
  87. 87.
    Q. Zheng and R.G. Reddy, Mechanism of In Situ Formation of AlN in Al Melt Using Nitrogen Gas, J. Mater Sci., 2004, 9, p 141–149Google Scholar
  88. 88.
    Q. Zheng and R.G. Reddy, Kinetics of In-Situ Formation of AlN in Al Alloy Melts by Bubbling Ammonia Gas, Metall. Mater. Trans. B., 2003, 34, p 793–804Google Scholar
  89. 89.
    Y. Huashun, J.D. Kim, and S.B. Kang, The Formation of AlN and TiN Particles During Nitrogen Bearing Gas Injection into Al-Mg-Ti Melt, Mater. Sci. Eng. A, 2004, 386, p 318–325Google Scholar
  90. 90.
    S.S.S. Kumari, U.T.S. Pillai, and B.C. Pai, Synthesis and Characterization of In Situ Al-AlN Composite by Nitrogen Gas Bubbling Method, J. Alloys Compd., 2011, 509, p 2503–2509Google Scholar
  91. 91.
    S. Fale, A. Likhite, and J. Bhatt, Nucleation Criteria for the Formation of Aluminum Nitride in Aluminum Matrix by Nitridation, Trans. Indian Inst. Met., 2013, 66, p 265–271Google Scholar
  92. 92.
    K. Wang, C. Cui, Q. Wang, Y. Qi, and C. Wang, Fabrication of In Situ AlN-TiN/Al Inoculant and Its Refining Efficiency and Reinforcing Effect on Pure Aluminum, J. Alloys Compd., 2013, 547, p 5–10Google Scholar
  93. 93.
    H. Wang, Y. Zhao, G. Li, and Z. Zhang, Characterization of (Al2O3) p/Al Composites In Situ Synthesized by Direct Melt Reaction Method, Adv. Mater. Res., 2011, 153, p 25–28Google Scholar
  94. 94.
    B. Yang, M. Sun, G. Gan, C. Xu, Z. Huang, H. Zhang, and Z. Zak, In Situ Al2O3 Particle-Reinforced Al and Cu Matrix Composites Synthesized by Displacement Reactions, J. Alloys Compd., 2010, 494, p 261–265Google Scholar
  95. 95.
    M. Hoseini and M. Meratian, Fabrication of In Situ Aluminum–Alumina Composite with Glass Powder, J. Alloys Compd., 2009, 471, p 378–382Google Scholar
  96. 96.
    P.C. Maity, P.N. Chakraborty, and S.C. Panigrahi, Al-Al2O3 In Situ Particle Composites by Reaction of CuO Particles in Molten Pure Al, Mater. Lett., 1997, 30, p 147–151Google Scholar
  97. 97.
    P.C. Maity, P.N. Chakraborty, and S.C. Panigrahi, Preparation of Al-Al2O3 In-Situ Particle Composites by Addition of Fe2O3 Particles to Pure Al Melt, J. Mater. Sci. Lett., 1997, 6, p 1224–1226Google Scholar
  98. 98.
    B.S.S. Daniel and V.S.R. Murthy, Directed Melt Oxidation and Nitridation of Aluminium Alloys: A Comparison, Mater. Des., 1995, 16, p 155–161Google Scholar
  99. 99.
    V.S.R. Murthy and B.S. Rao, Microstructural Development in the Directed Melt-Oxidized (DIMOX) AI-Mg-Si Alloys, J. Mater Sci., 1995, 30, p 3091–3097Google Scholar
  100. 100.
    Y. Zhang, N. Ma, and H. Wang, Improvement of Yield Strength of LM24 Alloy, J. Mater. Des., 2014, 54, p 14–17Google Scholar
  101. 101.
    D. Ko, G. Yu, J. Youn, and Y. Kim, Ultrasonic Effect on Refinement of Mg2Si and Mechanical Properties of In Situ Al-Mg2Si Composites, Adv. Mater. Res., 2009, 82, p 549–552Google Scholar
  102. 102.
    R. Hadian, M. Emamy, N. Varahram, and N. Nemati, The Effect of Li on the Tensile Properties of Cast Al-Mg2Si Metal Matrix Composite, Mater. Sci. Eng. A, 2008, 490, p 250–257Google Scholar
  103. 103.
    N. Liu, J. Li, and H. Li, Influence of Sb on Wear Resistance of In-Situ Mg2Si/Al-Si Composites, Adv. Mater. Res., 2011, 313, p 197–200Google Scholar
  104. 104.
    M. Emamy, H.R.J. Nodooshan, and A. Malekan, The Microstructure, Hardness and Tensile Properties of Al-15% Mg2Si In Situ Composite with Yttrium Addition, Mater. Des., 2011, 32, p 4559–4566Google Scholar
  105. 105.
    R. Khorshidi, A.H. Raouf, M. Emamy, and H.R.J. Nodooshan, The Evolution of Heat Treatment on the Tensile Properties of Na-Modified Al-Mg2Si In Situ Composite, Adv. Mater. Res., 2011, 313, p 283–286Google Scholar
  106. 106.
    B. Cicek, H. Ahlatci, and Y. Sun, Wear Behaviours of Pb Added Mg-Al-Si Composites Reinforced with In Situ Mg2Si Particles, Mater. Des., 2013, 50, p 929–935Google Scholar
  107. 107.
    Y. Zhao, Q. Qin, Y. Zhao, Y. Liang, and Q. Jiang, In Situ Mg2Si/Al-Si Composite Modified by K2TiF6, Mater. Lett., 2004, 58, p 2192–2194Google Scholar
  108. 108.
    J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou, Microstructural Evolution of the In Situ Al-15 wt.% Mg2Si Composite with Extra Si Contents, Scripta Mater., 2000, 42, p 1101–1106Google Scholar
  109. 109.
    J. Zhang, Z. Fan, Y. Wang, and B. Zhou, Microstructural Refinement in Mg2Si In Situ Composites, J. Mater. Sci. Let., 1999, 8, p 783–784Google Scholar
  110. 110.
    J. Zhang, Y. Zhao, X. Xu, and X. Liu, Effect of Ultrasonic on Morphology of Primary Mg2Si in In-Situ Mg2Si/Al Composite, Trans. Nonferr. Soc. China, 2013, 23, p 2852–2856Google Scholar
  111. 111.
    H. Ahlatci, A. Durmaz, A. Balta, M. Acarer, and E. Candan, Effect of Ti on the Corrosion Behaviour of In-Situ Mg2Si Particle Reinforced Al-12Si-20Mg-XTi Alloys Element Al Ti Si Mg, Mater. Sci. Forum, 2010, 637, p 511–516Google Scholar
  112. 112.
    M. Emamy, R. Khorshidi, and A.H. Raouf, The Influence of Pure Na on the Microstructure and Tensile Properties of Al-Mg2Si Metal Matrix Composite, Mater. Sci. Eng. A, 2011, 528, p 4337–4342Google Scholar
  113. 113.
    M. Emamy, A.R. Emami, R. Khorshidi, and M.R. Ghorbani, The Effect of Fe-Rich Intermetallics on the Microstructure, Hardness and Tensile Properties of Al-Mg2Si Die-Cast Composite, Mater. Des., 2013, 46, p 881–888Google Scholar
  114. 114.
    E. Georgatis, A. Lekatou, A.E. Karantzalis, H. Petropoulos, S. Katsamakis, and A. Poulia, Development of a Cast Al-Mg2Si-Si In Situ Composite: Microstructure, Heat Treatment, and Mechanical Properties, J. Mater. Eng. Perf., 2013, 22, p 729–741Google Scholar
  115. 115.
    A. Malekan, M. Emamy, J. Rassizadehghani, and A.R. Emami, The Effect of Solution Temperature on the Microstructure and Tensile Properties of Al-15% Mg2Si Composite, Mater. Des., 2011, 32, p 2701–2709Google Scholar
  116. 116.
    Y. Sun and H. Ahlatci, Mechanical and Wear Behaviors of Al-12Si-XMg Composites Reinforced with In Situ Mg2Si Particles, Mater. Des., 2011, 32, p 2983–2987Google Scholar
  117. 117.
    X. Lin, C. Liu, and H. Xiao, Fabrication of Al-Si-Mg Functionally Graded Materials Tube Reinforced with In Situ Si/Mg2Si Particles by Centrifugal Casting, Compos. Part B, 2013, 45, p 8–21Google Scholar
  118. 118.
    Y.G. Zhao, Q.D. Qin, Y.H. Liang, W. Zhou, and Q.C. Jiang, Mg2Si/Al-Si-Cu Composite Modified by Strontium, J. Mater Sci., 2005, 40, p 1831–1833Google Scholar
  119. 119.
    R. Hadian, M. Emamy, and J. Campbell, Modification of Cast Al-Mg2Si Metal Matrix Composite by Li, Metall. Mater. Trans. B, 2009, 40, p 822–832Google Scholar
  120. 120.
    N. Soltani, A. Bahrami, and M.I. Pech-canul, The Effect of Ti on Mechanical Properties of Extruded In-Situ Al-15% Mg2Si Composite, Metall. Mater. Trans. A, 2013, 44A, p 4366–4373Google Scholar
  121. 121.
    W.U. Xiaofeng, Z. Guang, W.U. Fufa, and W. Zhe, Influence of Neodymium Addition on Microstructure, Tensile Properties and Fracture Behavior of Cast Al-Mg2Si Metal Matrix Composite, J. Rare Earths, 2013, 31, p 307–312Google Scholar

Copyright information

© ASM International 2015

Authors and Affiliations

  • S. L. Pramod
    • 1
  • Srinivasa R. Bakshi
    • 1
  • B. S. Murty
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, MadrasChennaiIndia

Personalised recommendations