Journal of Materials Engineering and Performance

, Volume 24, Issue 2, pp 1018–1025 | Cite as

Microstructures and Mechanical Properties of Nano/Ultrafine-Grained N-Bearing, Low-Ni Austenitic Stainless Steels

  • S. Saeedipour
  • A. Kermanpur
  • A. Najafizadeh
  • M. Abbasi


The nitrogen (N)-bearing austenitic stainless steels are new materials with interesting mechanical properties such as high strength and ductility, desirable toughness and work hardening, and good corrosion resistance. This work attempted to investigate the effect of N addition from 0.08 to 0.35 wt.% on grain refinement of the 201L austenitic stainless steel using the martensite thermomechanical process. This process was composed of cold rolling up to the thickness reduction of 90 % followed by reversion annealing at 800 °C for 60 and 1800 s. It was found that increasing N content resulted in an increase in the austenite grain size for short annealing duration (e.g. 60 s), but caused a decrease in the austenite grain size for long annealing duration (e.g. 1800 s). The smallest austenite grain size of about 150 nm was achieved for the 201L steel containing 0.08 wt.% N after reversion annealing at 800 °C for 60 s. The mechanical properties of the reversion-annealed N-bearing steels were enhanced due to both N alloying and grain refinement.


AISI 201L stainless steel martensite thermomechanical process nano/ultrafine grain structure nitrogen 



The authors would like to express their thanks to Dr. P. Behjati and Mr. Fadavi for their valuable supports in experimental works.


  1. 1.
    H.K.D.H. Bhadeshia and R. Honeycombe, Steels Microstructure and Properties, 3rd ed., Elsevier Science, Oxford, 2006Google Scholar
  2. 2.
    M.F. McGuire, Stainless Steels for Design Engineers, ASM International, Metals Park, OH, 2008Google Scholar
  3. 3.
    M.D. Mathew, K. Laha, and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A, 2012, 535, p 76–83CrossRefGoogle Scholar
  4. 4.
    J.C. Lippold and D.J. Koteck, Welding Metallurgy and Weldability of Stainless Steels, Wiley, New Jersey, NJ, 2005Google Scholar
  5. 5.
    A. Di Schino and J.M. Kenny, Grain Refinement Strengthening of a Micro-Crystalline High Nitrogen Austenitic Stainless Steel, Mater. Lett., 2003, 57, p 1830–1834CrossRefGoogle Scholar
  6. 6.
    E. Werner, P.J. Uggowitzer, and M.O. Speidel, Mechanical Properties and Aging Behavior of Nitrogen Alloyed Austenitic Steels, Proc. Fifth Int. Conf. on the Mechanical Behavior of Materials, Beijing, 1987, Vol. 1, p. 419Google Scholar
  7. 7.
    M. Tendo, Y. Tadokoro, K. Suetsugu, and T. Nakazawa, Effects of Nitrogen, Niobium and Molybdenum on Strengthening of Austenitic Stainless Steel Produced by Thermo-Mechanical Control Process, ISIJ Int., 2001, 41, p 262–267CrossRefGoogle Scholar
  8. 8.
    K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104CrossRefGoogle Scholar
  9. 9.
    M. Karimi, A. Najafizadeh, A. Kermanpur, and M. Eskandari, Effect of Martensite to Austenite Reversion on the Formation of Nano/Submicron Grained AISI, 301 Stainless Steel, Mater. Charact., 2009, 60, p 1220–1223CrossRefGoogle Scholar
  10. 10.
    M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316L Stainless Steel After Cold Rolling and Annealing, Mater. Sci. Eng. A, 2009, 519, p 46–50CrossRefGoogle Scholar
  11. 11.
    A. Rezaee, A. Kermanpur, A. Najafizadeh, and M. Moallemi, Production of Nano/Ultrafine Grained AISI, 201L Stainless Steel Through Advanced Thermo-Mechanical Treatment, Mater. Sci. Eng. A, 2011, 528, p 5025–5029CrossRefGoogle Scholar
  12. 12.
    M. Moallemi, A. Kermanpur, A. Najafizadeh, A. Rezaee, and H. Samaei, Baghbadorani, Formation of Nano/Ultrafine Grain Structure in a 201 Stainless Steel Through the Repetitive Martensite Thermomechanical Treatment, Mater. Lett., 2012, 89, p 22–24CrossRefGoogle Scholar
  13. 13.
    C.-Y. Lee, C.-S. Yoo, A. Kermanpur, and Y.-K. Lee, The Effects of Multi-cyclic Thermo-Mechanical Treatment on the Grain Refinement and Tensile Properties of a Metastable Austenitic Steel, J. Alloy. Compd., 2014, 583, p 357–360CrossRefGoogle Scholar
  14. 14.
    A. Di Schino, M. Barteri, and J.M. Kenny, Effects of Grain Size on the Properties of a Low Nickel Austenitic Stainless Steel, J. Mater. Sci., 2003, 38, p 4725–4733CrossRefGoogle Scholar
  15. 15.
    H.L. Bing, J.Z. Hua, Z.Z. Rui, and Y. Yan, Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel, J. Iron. Steel Res. Int., 2009, 16, p 58–61Google Scholar
  16. 16.
    T.H. Lee, C.S. Oh, and S.J. Kim, Effects of Nitrogen on Deformation-Induced Martensitic Transformation in Metastable Austenitic Fe-18Cr-10Mn-N Steels, Scr. Mater., 2008, 58, p 110–113CrossRefGoogle Scholar
  17. 17.
    T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim, Correlation Between Stacking Fault Energy and Deformation Microstructure in High-Interstitial-Alloyed Austenitic Steels, Acta Mater., 2010, 58, p 3173–3186CrossRefGoogle Scholar
  18. 18.
    P. Behjati, A. Kermanpur, and A. Najafizadeh, Influence of Nitrogen Alloying on Properties of Fe-18Cr-12Mn-XN Austenitic Stainless Steels, Mater. Sci. Eng. A, 2013, 588, p 43–48CrossRefGoogle Scholar
  19. 19.
    M. Eskandari, A. Zarei-Hanzaki, and H.R. Abedi, An Investigation into the Room Temperature Mechanical Properties of Nanocrystalline Austenitic Stainless Steels, Mater. Des., 2013, 45, p 674–681CrossRefGoogle Scholar
  20. 20.
    K. Lücke and H.P. Stüwe, Recovery and Recrystallization of Metals, Interscience, New York, 1963Google Scholar
  21. 21.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004Google Scholar
  22. 22.
    M. Hillert, Solute Drag in Grain Boundary Migration and Phase Transformations, Acta Mater., 2004, 52, p 5289–5293CrossRefGoogle Scholar
  23. 23.
    L. Vitos, J.O. Nilsson, and B. Johansson, Alloying Effects on the Stacking Fault Energy in Austenitic Stainless Steels From First-Principles Theory, Acta Mater., 2006, 54, p 3821–3826CrossRefGoogle Scholar
  24. 24.
    B. Jiang, X. Qi, Z. Weiming, and Z.L. Li, The Effect of Nitrogen on Shape Memory Effect in Fe-Mn-Si Alloys, Scr. Mater., 1996, 34, p 1437–1441CrossRefGoogle Scholar
  25. 25.
    V. Gaviriljuk, Y. Petrov, and B. Shanina, Effect of Nitrogen on the Electron Structure and Stacking Fault Energy in Austenitic Steels, Scripta Mater., 2006, 55, p 537–542CrossRefGoogle Scholar
  26. 26.
    J. Talonen and H. Hänninen, Formation of Shear Bands and Strain-Induced Martensite during Plastic Deformation of Metastable Austenitic Stainless Steels, Acta Mater., 2007, 55, p 6108–6118CrossRefGoogle Scholar
  27. 27.
    G. VanderVoort and J. Friel, Image Analysis Measurements of Duplex Grain Structures, Mater. Charact., 1992, 29, p 293–312CrossRefGoogle Scholar
  28. 28.
    H. Azizi-Alizamini, M. Militzer, and W.J. Poole, A Novel Technique for Developing Bimodal Grain Size Distributions in Low Carbon Steels, Scr. Mater., 2007, 57, p 1065–1068CrossRefGoogle Scholar
  29. 29.
    H. Leda, Nitrogen in Martensitic Stainless Steels, J. Mater. Proc. Technol., 1995, 53, p 263–272CrossRefGoogle Scholar
  30. 30.
    J. Rawers and G. Slavens, Strengthening Characteristics of Nitrogen-Alloyed 201 Stainless Steel, J. Mater. Eng. Perform., 1995, 4, p 697–708CrossRefGoogle Scholar
  31. 31.
    S. Fréchard, A. Redjïmia, E. Lach, and A. Lichtenberger, Mechanical Behaviour of Nitrogen-Alloyed Austenitic Stainless Steel Hardened by Warm Rolling, Mater. Sci. Eng. A, 2006, 415, p 219–224CrossRefGoogle Scholar
  32. 32.
    D.W. Kim, Influence of Nitrogen-Induced Grain Refinement on Mechanical Properties of Nitrogen Alloyed Type 316LN Stainless Steel, J. Nucl. Mater., 2012, 420, p 473–478CrossRefGoogle Scholar
  33. 33.
    P. Shankar, D. Sundararaman, and S. Ranganathan, Clustering and Ordering of Nitrogen in Nuclear Grade 316LN Austenitic Stainless Steel, J. Nucl. Mater., 1998, 254, p 1–8CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • S. Saeedipour
    • 1
  • A. Kermanpur
    • 1
  • A. Najafizadeh
    • 1
    • 2
  • M. Abbasi
    • 1
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Foulad Institute of TechnologyIsfahanIran

Personalised recommendations