Journal of Materials Engineering and Performance

, Volume 24, Issue 2, pp 644–653 | Cite as

Preferred Crystallographic Orientation Development in Nano/Ultrafine-Grained 316L Stainless Steel During Martensite to Austenite Reversion

  • M. Eskandari
  • M. A. Mohtadi-Bonab
  • R. Basu
  • M. Nezakat
  • A. Kermanpur
  • J. A. Szpunar
  • S. Nahar
  • A. H. Baghpanah
Article

Abstract

The crystallographic orientation of cold-rolled 316L stainless steel is investigated during reversion of strain-induced ά-martensite to nano/ultrafine-grained austenite upon annealing at 750 °C for different holding times; 1, 5, 15, and 30 min. The texture of nanoscale reverted austenite reveals a Brass ({110}〈112〉) and a Goss ({110}〈100〉) textures after annealing for 1 min. No new texture component is appeared through the completion of martensite to austenite reversion for 5 min, but the intensity of Brass and Goss textures are increased. Further annealing for 30 min results in a stronger texture with higher intensity for Brass compared to Goss.

Keywords

crystallographic texture electron-backscattered diffraction (EBSD) nanostructured materials strain-induced martensite 

References

  1. 1.
    M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of Nano-grained Structure in a 301 Stainless Steel Using a Repetitive Thermo-mechanical Treatment, Mater. Lett., 2009, 63, p 1442CrossRefGoogle Scholar
  2. 2.
    M. Eskandari, A. Najafizadeh, and A. Kermanpur, Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316L Stainless Steel After Cold Rolling and Annealing, Mater. Sci. Eng. A, 2009, 519, p 46CrossRefGoogle Scholar
  3. 3.
    M. Eskandari, A. Zarei-Hanzaki, and H.R. Abedi, An Investigation into the Room Temperature Mechanical Properties of Nanocrystalline Austenitic Stainless Steels, Mater. Des., 2013, 45, p 674CrossRefGoogle Scholar
  4. 4.
    L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jimenez, and D. Raabe, Nanoscale Austenite Reversion Through Partitioning, Segregation and Kinetic Freezing: Example of a Ductile 2 GPa Fe-Cr-C steel, Acta Mater., 2012, 60, p 2790CrossRefGoogle Scholar
  5. 5.
    D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander, Nanoprecipitate-Hardened 1.5 GPa Steels with Unexpected High Ductility, Scripta Mater., 2009, 60, p 1141CrossRefGoogle Scholar
  6. 6.
    M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of Nanocrystalline Structure in 301 Stainless Steel Produced by Martensite Treatment, Metall. Mater. Trans. A, 2009, 40, p 2241CrossRefGoogle Scholar
  7. 7.
    B. Ravikumar, B. Mahato, N.R. Bandyopadhyay, and D.K. Bhattacharya, Influence of Strain-Induced Phase Transformation on the Surface Crystallographic Texture in Cold-Rolled-and-Aged Austenitic Stainless Steel, Metall. Mater. Trans. A, 2005, 36, p 3165CrossRefGoogle Scholar
  8. 8.
    K.B. Guy, E.P. Butler, and D.R.F. West, Reversion of bcc α′ Martensite in Fe-Cr-Ni Austenitic Stainless Steels, Met. Sci., 1983, 17, p 167CrossRefGoogle Scholar
  9. 9.
    S.G. Chowdhury, S. Das, B. Ravikumar, S. Kumar, and G. Gottstein, Textural Development in AISI, 316 Stainless Steel During Cold Rolling and Annealing, Mater. Sci. Forum, 2002, 408, p 1371CrossRefGoogle Scholar
  10. 10.
    S.G. Chowdhury, S. Das, and P.K. De, Cold rolling Behaviour and Textural Evolution in AISI, 316L Austenitic Stainless Steel, Acta Mater., 2005, 53, p 3951CrossRefGoogle Scholar
  11. 11.
    D.V. Shtansky, K. Nakai, and Y. Ohmori, Crystallography and Structural Evolution During Reverse Transformation an Fe-17Cr-0.5C Tempered Martensite, Acta Mater., 2000, 48, p 1679CrossRefGoogle Scholar
  12. 12.
    N.C. Law and D.V. Edmonds, The Formation of Austenite in a Low-Alloy Steel, Metall. Trans. A, 1980, 11, p 33CrossRefGoogle Scholar
  13. 13.
    N. Nakada, T. Tsuchiyama, S. Takaki, and S. Hashizume, Variant Selection of Reversed Austenite in Lath Martensite, ISIJ Int., 2007, 47, p 1527CrossRefGoogle Scholar
  14. 14.
    O. Dmitrieva, D. Ponge, G. Inden, J. Millan, P. Choi, J. Sietsma, and D. Raabe, Chemical Gradients Across Phase Boundaries Between Martensite and Austenite in Steel Studied by Atom Probe Tomography and Simulation, Acta Mater., 2011, 59, p 364CrossRefGoogle Scholar
  15. 15.
    D. Raabe, S. Sandlobes, J. Millan, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: A Pathway to Ductile Martensite, Acta Mater., 2013, 61, p 6132CrossRefGoogle Scholar
  16. 16.
    N. Nakada, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe, Transition from Diffusive to Displacive Austenite Reversion in Low-Alloy Steel, ISIJ Int., 2013, 53, p 2275CrossRefGoogle Scholar
  17. 17.
    M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe, Smaller is Less Stable: Size Effects on Twinning Vs. Transformation of Reverted Austenite in TRIP-Maraging Steels, Acta Mater., 2014, 79, p 268CrossRefGoogle Scholar
  18. 18.
    N. Nakada, R. Fukagawa, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe, Inheritance of Dislocations and Crystallographic Texture During Martensitic Reversion into Austenite, ISIJ Int., 2013, 53, p 1286CrossRefGoogle Scholar
  19. 19.
    M. Eskandari, M. Yeganeh, and M. Motamedi, Investigation in the Corrosion Behaviour of Bulk Nanocrystalline 316L Austenitic Stainless Steel in NaCl Solution, Micro Nano Lett., 2012, 7, p 380CrossRefGoogle Scholar
  20. 20.
    M.P. Phaniraj, D. Kim, and Y.W. Cho, Effect of Grain Boundary Characteristics on the Oxidation Behavior of Ferritic Stainless Steel, Corros. Sci., 2011, 53, p 4124CrossRefGoogle Scholar
  21. 21.
    S.G. Chowdhury and R. Singh, The Influence of Recrystallized Structure and Texture on the Sensitization Behaviour of a Stable Austenitic Stainless Steel (AISI, 316L), Scripta Mater., 2008, 58, p 1102CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • M. Eskandari
    • 1
    • 2
  • M. A. Mohtadi-Bonab
    • 2
  • R. Basu
    • 2
  • M. Nezakat
    • 2
  • A. Kermanpur
    • 3
  • J. A. Szpunar
    • 2
  • S. Nahar
    • 4
  • A. H. Baghpanah
    • 1
  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Advanced Materials for Clean Energy, Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada
  3. 3.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  4. 4.Department of Mechanical EngineeringIndian Institute of Technology GandhinagarAhmedabadIndia

Personalised recommendations