Advertisement

Journal of Materials Engineering and Performance

, Volume 24, Issue 2, pp 618–625 | Cite as

Texture and Mechanical Behavior of Zircaloy-2 Rolled at Different Temperatures

  • Sunkulp Goel
  • Nachiket Keskar
  • R. JayaganthanEmail author
  • I. V. Singh
  • D. Srivastava
  • G. K. Dey
  • S. K. Jha
  • N. Saibaba
Article

Abstract

Zircaloy-2 was deformed by cryorolling (CR) and room-temperature rolling (RTR) with different true strains, and the effects of true strains on microstructural characteristics, texture, and mechanical properties of the alloy were investigated in the current study. The alloy was subjected to rolling at liquid nitrogen temperature and room temperature with the maximum true strain of 1.89 after the initial heat treatment of the alloy at 800 °C in inert atmosphere followed by quenching in mercury. The hardness and tensile properties of the CR, RTR, and annealed alloy upon rolling were systematically measured in rolling and transverse directions. The tensile strengths were found to be 891 and 679 MPa, while hardness values were found to be 282 and 269 VHN for the CR and RTR alloys, in the rolling direction, respectively. Texture results showed the activation of basal slip at higher strains in RTR zircaloy-2. In CR zircaloy-2, only activation of prism slip was observed. Grain refinement, substructures, and texture in the deformed alloy contribute to the improved mechanical properties observed in the current study.

Keywords

mechanical properties rolling texture ultrafine grains 

Notes

Acknowledgment

One of the authors, Dr. R. Jayaganthan, expresses his sincere thanks to BRNS, Bombay for their financial Grant to this study through Grant No: BRN-577-MMD.

References

  1. 1.
    R.L. Mehan and F.W. Wiesinger, Mechanical Properties of Zircaloy-2, AEC Research and Development Report, 1961Google Scholar
  2. 2.
    S.R. Macewen, J. Faber, Jr., and A.P.L. Turner, The Use of Time-Of-Flight Neutron Diffraction to Study Grain Interaction Stresses, Acta Mater., 1983, 31, p 657–676CrossRefGoogle Scholar
  3. 3.
    E.F. Ibrahim, In-Reactor Creep of Zirconium-Alloy Tubes and Its Correlation with Uniaxial Data, Am. Soc. Test. Mater. ASTM STP, 1969, 458, p 18–36Google Scholar
  4. 4.
    J.A.L. Robertson, Zirconium-An International Nuclear Material, J. Nucl. Mater., 1981, 100, p 108–118CrossRefGoogle Scholar
  5. 5.
    R.G. Ballinger and R.M. Pelloux, The Effect of Anisotropy on the Mechanical Behavior of Zircaluy-2, J. Nucl. Mater., 1981, 97, p 231–253CrossRefGoogle Scholar
  6. 6.
    E. Tenckhoff, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, American Society for Testing and Materials, Philadelphia, 1988Google Scholar
  7. 7.
    K.L. Murty and I. Charit, Texture Development and Anisotropic Deformation of Zircaloys, Prog. Nucl. Energy, 2006, 48, p 325–359CrossRefGoogle Scholar
  8. 8.
    Y.N. Wang and J.C. Huang, Review: Texture Analysis in Hexagonal Materials, Mater. Chem. Phys., 2003, 81, p 11–26CrossRefGoogle Scholar
  9. 9.
    R.J. McCabe, E.K. Cerreta, A. Misra, G.C. Kaschner, and C.N. Tome, Effects of Texture, Temperature, and Strain on the Deformation Modes of Zirconium, Philos. Mag. A, 2006, 86, p 3595–3611CrossRefGoogle Scholar
  10. 10.
    M. Knezevic, I.J. Beyerlein, T. Nizolek, N.A. Mara, and T.M. Pollock, Anomalous Basal Slip Activity in Zirconium under High strain Deformation, Mater. Res. Lett., 2013, 1, p 133–140CrossRefGoogle Scholar
  11. 11.
    R.J. McCabe, G. Proust, E.K. Cerreta, and A. Misra, Quantitative Analysis of Deformation Twinning in Zirconium, Int. J. Plast, 2009, 25, p 454–472CrossRefGoogle Scholar
  12. 12.
    S.K. Sahoo, V.D. Hiwarkar, K.V. Mani Krishna, I. Samajdar, P. Pant, P.K. Pujari, G.K. Dey, D. Srivastav, R. Tiwari, and S. Banerjee, Grain Fragmentation and Twinning in Deformed Zircaloy 2: Response to Positron Lifetime Measurements, Mater. Sci. Eng. A, 2010, 527, p 1427–1435CrossRefGoogle Scholar
  13. 13.
    S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, G.K. Dey, D. Srivastav, R. Tiwari, and S. Banerjee, Heterogeneous Deformation in Single-Phase Zircaloy 2, Scripta Mater., 2007, 56, p 963–966CrossRefGoogle Scholar
  14. 14.
    B.A. Cheadle and C.E. Ells, The Effect of Rolling Temperature on the Texture Developed in Rolled Zirconium Rich Alloys, J. Nucl. Mater., 1967, 24, p 240–244CrossRefGoogle Scholar
  15. 15.
    P. Sanchez, A. Pochettino, T. Chauveau, and B. Bacroix, Torsion Texture Development of Zirconium Alloys, J. Nucl. Mater., 2001, 298, p 329–339CrossRefGoogle Scholar
  16. 16.
    X. Sauvage, G. Wilde, S. Divinsky, Z. Horita, and R.Z. Valiev, Grain Boundaries in Ultrafine Grained Materials Processed by Severe Plastic Deformation and Related Phenomena, Mater. Sci. Eng. A, 2012, 540, p 1–12CrossRefGoogle Scholar
  17. 17.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45, p 103–189CrossRefGoogle Scholar
  18. 18.
    Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, 61, p 782–817CrossRefGoogle Scholar
  19. 19.
    M. Vedani, P. Bassani, A. Tuissi, G. Angella, Ultrafine Grained Alloys Produced by Severe Plastic Deformation: Issues on Microstructural Control and Mechanical Behavior, Metall. Sci. Technol., 2004, p. 21-30Google Scholar
  20. 20.
    D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, and X. Zhang, Effect of Strain Rate on Microstructure Evolutions and Mechanical Properties of Cryorolled Zr Upon Annealing, Mater. Lett., 2012, 66, p 305–307CrossRefGoogle Scholar
  21. 21.
    D. Guo, M. Li, Y. Shi, Z. Zhang, H. Zhang, X. Liu, B. Wei, and X. Zhang, High Strength and Ductility in Multimodal-Structured Zr, Mater. Des., 2012, 34, p 275–278CrossRefGoogle Scholar
  22. 22.
    D. Guo, M. Li, Y. Shi, Z. Zhang, T. Ma, H. Zhang, and X. Zhang, Simultaneously Enhancing the Ductility and Strength of Cryorolled Zr Via Tailoring Dislocation Configurations, Mater. Sci. Eng. A, 2012, 558, p 611–615CrossRefGoogle Scholar
  23. 23.
    N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, and P. Venugopal, Effect of Cryo-Rolling and Annealing on Microstructure and Properties of Commercially Pure Aluminium, Mater. Sci. Eng. A, 2005, 398, p 246–251CrossRefGoogle Scholar
  24. 24.
    Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–914CrossRefGoogle Scholar
  25. 25.
    P.A.R. Kamalanath and A. Sarkar, Tensile Behavior of Cryorolled Zircaloy-2, Global J. Res. Eng. Mech. Mech. Eng., 2012, 12, p 23–25Google Scholar
  26. 26.
    Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Adv. Mater., 2006, 18, p 2280–2283CrossRefGoogle Scholar
  27. 27.
    S.K. Panigrahi and R. Jayaganthan, Development of Ultrafine-Grained Al 6063 Alloy by Cryorolling with the Optimized Initial Heat Treatment Conditions, Mater. Des., 2011, 32, p 2172–2180CrossRefGoogle Scholar
  28. 28.
    S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical and Microstructural Characterization of Ultrafine Grained Zircaloy-2 Produced by Room Temperature Rolling, Mater. Des., 2014, 55, p 612–618CrossRefGoogle Scholar
  29. 29.
    S. Goel, N. Keskar, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Mechanical Behavior and Microstructural Characterization of Ultrafine Grained Zircaloy-2 Produced by Cryo Rolling, Mater. Sci. Eng. A, 2014, 603, p 23–29CrossRefGoogle Scholar
  30. 30.
    J.L. Derep, S. Ibrahim, R. Rouby, and G. Fantozzi, Deformation Behavior of Zircaloy-4 Between 77 and 900 K, Acta Metall., 1980, 28, p 607–619CrossRefGoogle Scholar
  31. 31.
    I.J. Beyerlein and C.N. Tome, A Dislocation Based Constitutive Model for Pure Zr Including Temperature Effects, Int. J. Plast, 2008, 24, p 867–895CrossRefGoogle Scholar
  32. 32.
    J.I. Dickson and G.B. Craig, Room Temperature Basal Slip in Zirconium, J. Nucl. Mater., 1971, 40, p 346–348CrossRefGoogle Scholar
  33. 33.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Pergamon, 2004Google Scholar
  34. 34.
    Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang, Effect of Deformation Twinning on Microstructure and Texture Evolution During Cold Rolling of CP-Titanium, Mater. Sci. Eng. A, 2005, 398(2005), p 209–219CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • Sunkulp Goel
    • 1
  • Nachiket Keskar
    • 3
  • R. Jayaganthan
    • 1
    Email author
  • I. V. Singh
    • 2
  • D. Srivastava
    • 3
  • G. K. Dey
    • 3
  • S. K. Jha
    • 4
  • N. Saibaba
    • 4
  1. 1.Department of Metallurgical and Materials Engineering & Centre of NanotechnologyIIT RoorkeeRoorkeeIndia
  2. 2.Department of Mechanical and Industrial EngineeringIIT RoorkeeRoorkeeIndia
  3. 3.Materials Science DivisionBhabha Atomic Research CenterMumbaiIndia
  4. 4.Nuclear Fuel Complex LimitedHyderabadIndia

Personalised recommendations