Advertisement

EBSD Study of Damage Mechanisms in a High-Strength Ferrite-Martensite Dual-Phase Steel

  • N. SaeidiEmail author
  • F. Ashrafizadeh
  • B. Niroumand
  • F. Barlat
Article

Abstract

Electron backscattered diffraction (EBSD) analyses were performed on a fine-grained dual-phase (DP) sheet steel subjected to uniform tensile deformation and the preferred void nucleation sites as well as the micro-mechanisms of void formation were examined. EBSD study of grain average misorientation, grain orientation spread and kernel average misorientation of the deformed microstructure revealed that voids nucleation initially happened at ferrite-martensite interfaces neighboring rather large ferrite grains. This is believed to be mainly due to the higher shear deformation ability of the larger ferrite grains, the higher number of dislocation pile-ups at the martensite particles and the less uniform strain distribution within the larger ferrite grains compared to the smaller ones. The results demonstrated the impact of increasing uniform strain distribution within the DP microstructure on lowering the void nucleation probability.

Keywords

dual-phase steel EBSD analysis void nucleation micro-mechanisms 

References

  1. 1.
    H. Jin, W.Y. Ln, J.W. Foulk, A. Mota, G. Johnson, and J. Korellis, An Examination of Anisotropic Void Evolution in Aluminum Alloy 7075, Exp. Mech., 2013, 53, p 1583–1596CrossRefGoogle Scholar
  2. 2.
    J. Pospiech, Ductile Fracture of Carbon Steels: A Review, J. Mater. Eng. Perform., 1995, 4, p 82–89CrossRefGoogle Scholar
  3. 3.
    J.K. Cuddy and M.N. Bassim, Ductile Fracture Mechanisms in AISI, 4340 Steel, Mater. Sci. Eng. A., 1990, 125, p 43–48CrossRefGoogle Scholar
  4. 4.
    E. Ahmad, T. Manzoor, M.M.A. Ziai, and N. Hussain, Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel, J. Mater. Eng. Perform., 2012, 21, p 382–387CrossRefGoogle Scholar
  5. 5.
    G. Avramovic-Cingara, Y. Ososkova, M.K. Jain, and D.S. Wilkinson, Effect of Martensite Distribution on Damage Behavior in DP600 Dual Phase Steels, Mater. Sci. Eng. A., 2009, 516, p 7–16CrossRefGoogle Scholar
  6. 6.
    G. Avramovic-Cingara, Y. Ososkova, M.K. Jain, and D.S. Wilkinson, Void Nucleation and Growth in Dual-Phase Steel 600 During Uniaxial Tensile Testing, Metall. Mater. Trans. A., 2009, 40, p 3117–3127CrossRefGoogle Scholar
  7. 7.
    J. Kadkhodapour, A. Butz, and S. Ziaei Rad, Mechanisms of Void Formation During Tensile Testing in a Commercial, Dual-Phase Steel, Acta. Mater., 2011, 59, p 2575–2588CrossRefGoogle Scholar
  8. 8.
    M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A., 2010, 527, p 7832–7840CrossRefGoogle Scholar
  9. 9.
    X. Pan, X. Wu, K. Mo, X. Chen, J. Almer, J. Ilavsky, D.R. Haeffner, and J.F. Stubbins, Lattice Strain and Damage Evolution of 9-12% Cr Ferritic/Martensitic Steel During In Situ Tensile Test by X-Ray Diffraction and Small Angle Scattering, Nucl. Mater., 2010, 407, p 10–15CrossRefGoogle Scholar
  10. 10.
    K. Kocatepe, M. Cerah, and M. Erdogan, The Tensile Fracture Behavior of Intercritically Annealed and Quenched Tempered Ferritic Ductile Iron with Dual Matrix Structure, Mater. Des., 2007, 28, p 172–181CrossRefGoogle Scholar
  11. 11.
    M. Sarwar, E. Ahmad, K.A. Qureshi, and T. Manzoor, Influence of Epitaxial Ferrite on Tensile Properties of Dual Phase Steel, Mater. Des., 2007, 28, p 335–340CrossRefGoogle Scholar
  12. 12.
    Annual book of ASTM Standards, A370, 2001.Google Scholar
  13. 13.
    K. Fujiyama, K. Mori, D. Kaneko, H. Kimachi, T. Saito, R. Ishii, and T. Hino, Creep Damage Assessment of 10Cr-1Mo-1W-VNbN Steel Forging Through EBSD Observation, Int. J. Pres. Ves. Pip., 2009, 86, p 570–577CrossRefGoogle Scholar
  14. 14.
    K. Fujiyama, K. Mori, D. Kaneko, H. Kimachi, T. Saito, R. Ishii, and T. Hino, Creep-Damage Assessment of High Chromium Heat Resistant Steels and Weldments, Mater. Sci. Eng. A., 2009, 510–511, p 195–201CrossRefGoogle Scholar
  15. 15.
    P.A. Karnezis, G. Durrant, and B. Cantor, Characterization of Reinforcement Distribution in Cast Al-Alloy/SiCp Composites, Mater. Charact., 1988, 40, p 97–109CrossRefGoogle Scholar
  16. 16.
    N. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, Evaluation of Fracture Micromechanisms in a Fine Grained Dual Phase Steel During Uniaxial Tensile Deformation, J. Iron Steel Res. Int., 2014, 84, p 1386–1392Google Scholar
  17. 17.
    M. Calcagnotto, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta. Mater., 2011, 59, p 658–670CrossRefGoogle Scholar
  18. 18.
    J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei Rad, U. Weber, and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, Acta. Mater., 2011, 59, p 4387–4394CrossRefGoogle Scholar
  19. 19.
    S. Lefebvre, B. Devincre, and T. Hoc, Yield Stress Strengthening in Ultrafine-Grained Metals: A Two-Dimensional Simulation of Dislocation Dynamics, J. Mech. Phys. Solids., 2007, 55, p 788–802CrossRefGoogle Scholar
  20. 20.
    L. Zhonghua and G. Haicheng, Bauschinger Effect and Residual Phase Stresses in Two Ductile-Phase Steels: Part I. The Influence of Phase Stresses on the Bauschinger Effect, Metall. Trans. A., 1990, 21, p 717–724CrossRefGoogle Scholar
  21. 21.
    A.L. Helbert, X. Feaugas, and M. Clavel, Effects of Microstructural Parameters and Back Stress on Damage Mechanisms in α/β Titanium Alloys, Acta. Mater., 1998, 46, p 939–951CrossRefGoogle Scholar
  22. 22.
    M. Erdogan and S. Tekeli, The Effect of Martensite Particle Size on Tensile Fracture of Surface-Carburised AISI, 8620 Steel with Dual Phase Core Microstructure, Mater. Des., 2002, 23, p 597–604CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • N. Saeidi
    • 1
    Email author
  • F. Ashrafizadeh
    • 1
  • B. Niroumand
    • 1
  • F. Barlat
    • 2
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Materials Mechanics Laboratory (MML), Graduate Institute of Ferrous Technology (GIFT)Pohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations