Advertisement

Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

  • 183 Accesses

  • 12 Citations

Abstract

Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (ΔE). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 408

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    B. Xu, W. Yang, Y. Liu, X. Yin, W. Gong, and Y. Chen, Experimental and Theoretical Evaluation of Two Pyridinecarboxaldehyde Thiosemicarbazone Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution, Corros. Sci., 2014, 78, p 260–268

  2. 2.

    R.A. Prabhu, T.V. Venkatesha, A.V. Shanbhag, B.M. Praveen, G.M. Kulkarni, and R.G. Kalkhambkar, Quinol-2-thione Compounds as Corrosion Inhibitors for Mild Steel in Acid Solution, Mater. Chem. Phys., 2008, 108, p 283–289

  3. 3.

    K. Mallaiya, R. Subramaniam, S.S. Srikandan, S. Gowri, N. Rajasekaran, and A. Selvaraj, Electrochemical Characterization of the Protective Film Formed by the Unsymmetrical Schiff’s Base on the Mild Steel Surface in Acid Media, Electrochim. Acta., 2011, 56, p 3857–3863

  4. 4.

    D.D.N. Singh, T.B. Singh, and B. Gaur, The Role of Metal Cations in Improving the Inhibitive Performance of Hexamine on the Corrosion of Steel in Hydrochloric Acid Solutions, Corros. Sci., 1995, 37, p 1005–1019

  5. 5.

    X.H. Li, S.D. Deng, H. Fu, and T.H. Li, Adsorption and Inhibition Effect of 6-Benzylaminopurine on Cold Rolled Steel in 1.0 M HCl, Electrochim. Acta., 2009, 54, p 4089–4098

  6. 6.

    A. Doner, E.A. Sahin, G. Kardas, and O. Serindag, Investigation of Corrosion Inhibition Effect of 3-[(2-Hydroxy-benzylidene)-amino]-2-thioxo-thiazolidin-4-one on Corrosion of Mild Steel in the Acidic Medium, Corros. Sci., 2013, 66, p 278–284

  7. 7.

    M.A. Hegazy, A.M. Hasan, M.M. Emara, M.F. Bakr, and A.H. Youssef, Evaluating Four Synthesized SCHIFF Bases as Corrosion Inhibitors on the Carbon Steel in 1 M Hydrochloric Acid, Corros. Sci., 2012, 65, p 67–76

  8. 8.

    M. Mahdavian and S. Ashhari, Corrosion Inhibition Performance of 2-Mercaptobenzimidazole and 2-Mercaptobenzoxazole Compounds for Protection of Mild Steel in Hydrochloric Acid Solution, Electrochim. Acta., 2010, 55, p 1720–1724

  9. 9.

    G. Avci, Corrosion Inhibition of Indole-3-acetic Acid on Mild Steel in 0.5 M HCl, Colloids Surf. A, 2008, 317, p 730–736

  10. 10.

    A. Kokalj, Is the Analysis of Molecular Electronic Structure of Corrosion Inhibitors Sufficient to Predict the Trend of Their Inhibition Performance, Electrochim. Acta., 2010, 56, p 745–755

  11. 11.

    M.M. Antonijevic and M.B. Petrovic, Copper Corrosion Inhibitors. A Review, Int. J. Electrochem. Sci., 2008, 3, p 1–28

  12. 12.

    J.O. Bockris and A.K.N. Reddy, Modern Electrochemistry, 2nd ed., Kluwer Academic/Plenum Publishers, New York, 2000

  13. 13.

    V. Sastri, Corrosion Inhibition Mechanisms, John Wiley & Sons Inc, Hoboken, NJ, 2011

  14. 14.

    A. Kosari, M.H. Moayed, A. Davoodi, R. Parvizi, M. Momeni, H. Eshghi, and H. Moradi, Electrochemical and Quantum Chemical Assessment of Two Organic Compounds from Pyridine Derivatives as Corrosion Inhibitors for Mild Steel in HCl Solution Under Stagnant Condition and Hydrodynamic Flow, Corros. Sci., 2014, 78, p 138–150

  15. 15.

    M.A. Quraishi, F.A. Ansari, and D. Jamal, Thiourea Derivatives as Corrosion Inhibitors for Mild Steel in Formic Acid, Mater. Chem. Phys., 2002, 77, p 687–690

  16. 16.

    A.M. Fekry and R.R. Mohamed, Acetyl Thiourea Chitosan as an Eco-friendly Inhibitor for Mild Steel in Sulphuric Acid Medium, Electrochim. Acta., 2010, 55, p 1933–1939

  17. 17.

    R. Agrawal and T.K.G. Namboodhiri, The Inhibition of Sulphuric Acid Corrosion of 410 Stainless Steel by Thioureas, Corros. Sci., 1990, 30, p 37–52

  18. 18.

    V.V. Torres, R.S. Amado, C.F. de Sa, T.L. Fernandez, C.A.S. Riehl, A.G. Torres, and E.D. Elia, Inhibitory Action of Aqueous Coffee Ground Extracts on the Corrosion of Carbon Steel in HCl Solution, Corros. Sci., 2011, 53, p 2385–2392

  19. 19.

    K.F. Khaled, Experimental, Density Function Theory Calculations and Molecular Dynamics Simulations to Investigate the Adsorption of Some Thiourea Derivatives on Iron Surface in Nitric Acid Solutions, Appl. Surf. Sci., 2010, 256, p 6753–6763

  20. 20.

    K.F. Khaled, Application of Electrochemical Frequency Modulation for Monitoring Corrosion and Corrosion Inhibition of Iron by Some Indole Derivatives in Molar Hydrochloric Acid, Mater. Chem. Phys., 2008, 112, p 290–300

  21. 21.

    J. Alijourani, K. Raessi, and M.A. Golozar, Benzimidazole and Its Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl Solution, Corros. Sci., 2009, 51, p 1836–1843

  22. 22.

    E.E. Ebenso, Synergistic Effect of Halide Ions on the Corrosion Inhibition of Aluminium in H2SO4 Using 2-Acetylphenothiazine, Mater. Chem. Phys., 2003, 79, p 58–70

  23. 23.

    F. Bentiss, M. Lagrenee, M. Traisnel, and J.C. Hornez, The Corrosion Inhibition of Mild Steel in Acidic Media by a New Triazole Derivative, Corros. Sci., 1999, 41, p 789–803

  24. 24.

    M.G. Hosseini, H. Tavakoli, and T. Shahrabi, Synergism in Copper Corrosion Inhibition by Sodium Dodecylbenzenesulphonate and 2-Mercaptobenzoimidazole, J. Appl. Electrochem., 2008, 38, p 1629–1636

  25. 25.

    S.F. Mertens, C. Xhoffer, B.C. De Cooman, and E. Temerman, Short-Term Deterioration of Polymer-Coated 55% Al-Zn—Part 1: Behavior of Thin Polymer Films, Corrosion, 1997, 53, p 381–387

  26. 26.

    K. Ramya and A. Joseph, Dependence of Temperature on the Corrosion Protection Properties of Vanillin and Its Derivatives, HMATD, Towards Copper in Nitric Acid. Theor. Electro Anal. Stud. Doi: 10.1007/s11164-013-1254-5

  27. 27.

    W.J. Hehre, L. Radom, P.V.R. Schleyer, and A.J. Pople, Ab initio Molecular Orbital Theory, Wiley-Interscience, New York, 1986

  28. 28.

    J.F. Janak, Proof that δE/δni = ε in Density Functional Theory, Phys. Rev. B., 1978, 18, p 7138–7165

  29. 29.

    R. Stowasser and R. Hoffmann, What Do the Kohn−Sham Orbitals and Eigenvalues Mean?, J. Am. Chem. Soc., 1999, 121, p 3414–3420

  30. 30.

    A.E. Reed, L.A. Curtiss, and F. Weinhold, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev., 1988, 88, p 899–926

  31. 31.

    R.G. Pearson, Absolute Electronegativity and Hardness: Application to Inorganic Chemistry, Inorg. Chem., 1988, 27, p 734–740

  32. 32.

    R.G. Parr and W. Yang, Density Functional Approach to the Frontier—Electron Theory of Chemical Reactivity, J. Am. Chem. Soc., 1984, 106, p 4049–4050

  33. 33.

    K.F. Khaled, Studies of Iron Corrosion Inhibition Using Chemical, Electrochemical and Computer Simulation Techniques, Electrochim. Acta., 2010, 55, p 6523–6532

  34. 34.

    W. Yang and W.J. Mortier, The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines, J. Am. Chem. Soc., 1986, 108, p 5708–5711

  35. 35.

    M. Mobin, M. Parveen, and M.Z.A. Rafiquee, Synergistic Influence of Sodium Dodecyl Sulfate and Cetyltrimethyl Ammonium Bromide on the Corrosion Inhibition Behavior of l-Methionine on Mild Steel in Acidic Medium, Arab. J. chem., Doi: 10.1016/j.arabjc.2013.04.006

  36. 36.

    I. Dehri, H. Sozusag˘lam, and M. Erbil, EIS Study of the Effect of High Levels of NH3 on the Deformation of Polyester-Coated Galvanised Steel at Different Relative Humidities, Prog. Org. Coat., 2003, 48, p 118–123

  37. 37.

    F. Bentiss, M. Lebrini, and M. Lagrenee, Benzimidazole and Its Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl Solution, Corros. Sci., 2005, 47, p 2915–2931

  38. 38.

    M. El Azhar, B. Mernari, M. Traisnel, F. Bentiss, and M. Lagrenee, Corrosion Inhibition of Mild Steel by the New Class of Inhibitors [2,5-Bis(n-pyridyl)-1,3,4-thiadiazoles] in Acidic Media, Corros. Sci., 2001, 43, p 2229–2238

  39. 39.

    A. Yurt, A. Balaban, S.U. Kandemir, G. Bereket, and B. Erk, Investigation on Some Schiff Bases as HCl Corrosion Inhibitors for Carbon Steel, Mater. Chem. Phys., 2004, 85, p 420–426

  40. 40.

    B.M. Mistry and S. Jauhari, Synthesis and Evaluation of Some Quinoline Schiff Bases as a Corrosion Inhibitor for Mild Steel in 1 N HCl, Res. Chem. Intermed., 2013, 39, p 1049–1068

  41. 41.

    I. Ahamad, R. Prasad, and M.A. Quraishi, Inhibition of Mild Steel Corrosion in Acid Solution by Pheniramine Drug: Experimental and Theoretical Study, Corros. Sci., 2010, 52, p 3033–3041

  42. 42.

    I. Ahamad, R. Prasad, and M.A. Quraishi, Experimental and Quantum Chemical Characterization of the Adsorption of Some Schiff Base Compounds of Phthaloyl Thiocarbohydrazide on the Mild Steel in Acid Solutions, Mater. Chem. Phys., 2010, 124, p 1155–1165

  43. 43.

    E. McCafferty, Introduction to Corrosion Science, Springer, New York, 2010

  44. 44.

    E. McCafferty and N. Hackerman, Double Layer Capacitance of Iron and Corrosion Inhibition with Polymethylene Diamines, J. Electrochem. Soc., 1972, 119, p 146–154

  45. 45.

    A.K. Singh and M.A. Quraishi, Effect of Cefazolin on the Corrosion of Mild Steel in HCl Solution, Corros. Sci., 2010, 52, p 152–160

  46. 46.

    A. Kosari, M. Momeni, R. Parvizi, M. Zakeri, M.H. Moayed, A. Davoodi, and H. Eshghi, Theoretical and Electrochemical Assessment of Inhibitive Behavior of Some Thiophenol Derivatives on Mild Steel in HCl, Corros. Sci., 2011, 53, p 3058–3067

  47. 47.

    E.E. Oguzie, Y. Li, and F.H. Wang, Effect of 2-Amino-3-mercaptopropanoic Acid (Cysteine) on the Corrosion Behaviour of Low Carbon Steel in Sulphuric Acid, Electrochim. Acta., 2007, 53, p 909–914

  48. 48.

    N.A. Negm, F.M. Ghuiba, and S.M. Tawfik, Novel Isoxazolium Cationic Schiff Base Compounds as Corrosion Inhibitors for Carbon Steel in Hydrochloric Acid, Corros. Sci., 2011, 53, p 3566–3575

  49. 49.

    F. Bentiss, M. Traisnel, and M. Lagrenee, The Substituted 1,3,4-Oxadiazoles: A New Class of Corrosion Inhibitors of Mild Steel in Acidic Media, Corros. Sci., 2000, 42, p 127–146

  50. 50.

    E.S. Ferreira, C. Giancomelli, F.C. Giacomelli, and A. Spinelli, Evaluation of the Inhibitor Effect of l-Ascorbic Acid on the Corrosion of Mild Steel, Mater. Chem. Phys., 2004, 83, p 129–134

  51. 51.

    F. Zhang, Y. Tang, Z. Cao, W. Jing, Z. Wu, and Y. Chen, Performance and Theoretical Study on Corrosion Inhibition of 2-(4-Pyridyl)-benzimidazole for Mild Steel in Hydrochloric Acid, Corros. Sci., 2012, 61, p 1–9

  52. 52.

    P. Zhao, Q. Liang, and Y. Li, Electrochemical, SEM/EDS and Quantum Chemical Study of Phthalocyanines as Corrosion Inhibitors for Mild Steel in 1 mol/L HCl, Appl. Surf. Sci., 2005, 252, p 1596–1607

  53. 53.

    I. Ahamad, R. Prasad, and M.A. Quraishi, Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solutions, Corros. Sci., 2010, 52, p 933–942

  54. 54.

    G. Gao and C. Liang, Electrochemical and DFT Studies of β-Amino-Alcohols as Corrosion Inhibitors for Brass, Electrochim. Acta., 2007, 52, p 4554–4559

  55. 55.

    S.K. Rajak, N. Islam, and D.C. Ghosh, Modeling of the Chemico-physical Process of Protonation of Molecules Entailing Some Quantum Chemical Descriptors, J. Quantum Inf. Sci., 2011, 1, p 87–95

  56. 56.

    E.E. Ebenso, D.A. Isabirye, and N.O. Eddy, Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium, Int. J. Mol. Sci., 2010, 11, p 2473–2498

  57. 57.

    K. Aramaki and N. Hackerman, Inhibition Mechanism of Medium-Sized Polymethyleneimine, J. Electrochem. Soc., 1969, 116, p 568–574

  58. 58.

    M.K. Pavithr, T.V. Venkatesh, K. Vathsal, and K.O. Nayan, Synergistic Effect of Halide Ions on Improving Corrosion Inhibition Behaviour of Benzisothiozole-3-piperizine Hydrochloride on Mild Steel in 0.5 M H2SO4 Medium, Corros. Sci., 2010, 52, p 3811–3819

  59. 59.

    J.M. Cases and F. Villieras, Thermodynamic Model of Ionic and Nonionic Surfactants Adsorption-Abstraction on Heterogeneous Surfaces, Langmuir, 1992, 8, p 1251–1264

  60. 60.

    G. Moretti, G. Quartarone, A. Tassan, and A. Zingales, 5-Amino- and 5-Chloro-indole as Mild Steel Corrosion Inhibitors in 1 N Sulphuric Acid, Electrochim. Acta., 1996, 41, p 1971–1980

  61. 61.

    F. Bentiss, M. Traisnel, and M. Lagrenee, Influence of 2,5-Bis(4-dimethylaminophenyl)-1,3,4-thiadiazole on Corrosion Inhibition of Mild Steel in Acidic Media, J. Appl. Electrochem., 2001, 31, p 41–48

  62. 62.

    M.A. Quraishi, I. Ahamed, and R. Prasad, Adsorption and Inhibitive Properties of Some New Mannich Bases of Isatin Derivatives on Corrosion of Mild Steel in Acidic Media, Corros. Sci., 2010, 52, p 1472–1481

  63. 63.

    K. Parameswari, S. Rekha, S. Chitra, and E. Kayalvizhy, Study on the Inhibition of Mild Steel Corrosion by Benzoisoxazole and Benzopyrazole Derivatives in H2SO4 Medium, Port. Electrochim. Acta., 2010, 28, p 189–201

  64. 64.

    N.M. Guan, L. Xueming, and L. Fei, Synergistic Inhibition Between o-Phenanthroline and Chloride Ion on Cold Rolled Steel Corrosion in Phosphoric Acid, Mater. Chem. Phys., 2004, 86, p 59–68

  65. 65.

    A.J.A. Nasser and M.A. Sathiq, Comparative study of N-[(4-Methoxyphenyl) (morpholin-4-yl)methyl]acetamide (MMPA) and N-[Morpholin-4-yl(phenyl)methyl]acetamide (MPA) as Corrosion Inhibitors for Mild Steel in Sulfuric Acid Solution, Arab. J. Chem., Doi:10.1016/j.arabjc.2012.07.032

  66. 66.

    S.A.M. Refaey, F. Taha, and A.M. Abd El-Malak, Inhibition of Stainless Steel Pitting Corrosion in Acidic Medium by 2-Mercaptobenzoxazole, Appl. Surf. Sci., 2004, 236, p 175–185

Download references

Author information

Correspondence to Abraham Joseph.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramya, K., Mohan, R. & Joseph, A. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid. J. of Materi Eng and Perform 23, 4089–4101 (2014). https://doi.org/10.1007/s11665-014-1183-5

Download citation

Keywords

  • acid corrosion
  • acid inhibition
  • acid solutions
  • EIS
  • mild Steel