Journal of Materials Engineering and Performance

, Volume 23, Issue 10, pp 3449–3458 | Cite as

Interface Phenomena and Bonding Mechanism in Magnetic Pulse Welding

  • A. Stern
  • V. Shribman
  • A. Ben-Artzy
  • M. Aizenshtein


Magnetic pulse welding (MPW) is a solid-state impact welding technology that provides metallurgical joints while exhibiting a negligible heat-affected zone. The MPW process is a high speed single shot welding technique used mainly for joining tubular components in a lap configuration and characteristic length scales of few millimeters to centimeters. It is similar in operation to explosive welding and shares the same physical principles. The nature of bonding in MPW is not sufficiently understood yet and some controversial explanations are reported in the literature. The two major ideas are based on either solid state bonding or local melting and solidification. The present work summarizes our current understanding of the bonding mechanism and the structure in various similar and dissimilar metal pairs joined by MPW.


dissimilar metals interfaces intermetallics magnetic pulse welding 



The authors wish to acknowledge Y. Livshitz and O. Gafri of PULSAR technology LTD, for the experimental effort that was done in preparing the samples.


  1. 1.
    E. Uhlmann and A. Ziefle, Modelling Pulse Magnetic Welding Processes—An Empirical Approach, 4th International Conference on High Speed Forming, 2010, p 108–116.Google Scholar
  2. 2.
    D. Winter, Old Process of Magnetic Pulse Welding Offers New Possibilities, Auto World USA, 1999, 35(1), p 57–60Google Scholar
  3. 3.
    M. Pezzutti, Innovative Welding Technologies for the Automotive Industry, Weld. J. USA, 2000, 79(6), p 43–46Google Scholar
  4. 4.
    V. Shribman, A. Stern, Y. Livshitz, and O. Gafri, Magnetic Pulse Welding Produces High-Strength Aluminum Welds, Weld. J., 2002, 81, p 33–37Google Scholar
  5. 5.
    V. Shribman and H. Kramer, Proceedings: The First Technical Conference on Industrialized Magnetic Pulse Welding and Forming, SLV Munich, German Welding Institute, 2008Google Scholar
  6. 6.
    V. Shribman, Magnetic Pulse Welding for Dissimilar and Similar Materials, 3rd International Conference on High Speed Forming, 2008, p 13–22Google Scholar
  7. 7.
    S.D. Kore, P.P. Date, S.V. Kulkarni, S. Kumar, D. Rani, M.R. Kulkarni, S.V. Desai, R.K. Rajawat, K.V. Nagesh, and D.P. Chakravarty, Application of Electromagnetic Impact Technique for Welding Copper-to-Stainless Steel Sheets, Int. J. Adv. Manuf. Technol., 2011, 54, p 949–955CrossRefGoogle Scholar
  8. 8.
    R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, G. Franz, and M. Habak, Study of the Elaboration of a Practical Weldability Window in Magnetic Pulse Welding, J. Mater. Process. Technol., 2013, 213(8), p 1348–1354CrossRefGoogle Scholar
  9. 9.
    K.K. Khrenov and V.A. Chudakov, Magnetic-Pulse Welding, Avtomat Svarka, 1968, 2, p 74–75Google Scholar
  10. 10.
    Z.A. Chankvetadze and N.M. Beriev, Determination of the Collision Velocity in Magnetic Pulse Welding, FizikaKhim. Obrabot. Mat., 1974, 4, p 132–134Google Scholar
  11. 11.
    E.S. Karakozov, Z.A. Chankvetadze, and N.M. Beriev, The Interaction of Metals in Magnetic Impulse Welding, Svar. Proiz, 1977, 12, p 4–6Google Scholar
  12. 12.
    Z.A. Chankvetadze, Technological Features of Magnetic Pulse Welding and Conditions Under Which the Joint is Formed, Automat. Weld. (USSR), 1979, 32(6), p 26–28Google Scholar
  13. 13.
    V.F. Karpouchin, V.A. Glouschenkov, and V.A. Mironov, Magnetic Pulse Welding, JOM, 1991, 5, p 241–245Google Scholar
  14. 14.
    M. Marya and S. Marya, Interfacial Microstructures and Temperatures in Aluminum-Copper Electromagnetic Pulse Welds, Sci. Technol. Weld. Join., 2004, 9(6), p 541–547CrossRefGoogle Scholar
  15. 15.
    K.J. Lee, K. Shinji, A. Takashi, and T. Aizawa, Interfacial Microstructure and Strength of Steel/Aluminum Alloy Lap Joint Fabricated by Magnetic Pressure Seam Welding, Mater. Sci. Eng. A, 2007, 471(1-2), p 95–101CrossRefGoogle Scholar
  16. 16.
    I.V. Volobuev and A.V. Legeza, Phase Transformations in Joints Produced by Magnetic Pulse Welding, Svar. Proiz., 1972, 8, p 8–9Google Scholar
  17. 17.
    V.P. Epechurin, Properties of Bimetal Joints Produced by Magnetic-Pulse Welding, Weld. Prod., 1974, 21(5), p 4–12Google Scholar
  18. 18.
    B. Yablochnikov, Apparatus for Magnetic Pulse Welding Large Diameter Thin-Walled Pipes, AVT. Svarka, 1983, 58(4), p 48–51Google Scholar
  19. 19.
    I. Masumoto, K. Tamaki, and M. Kojima, Study on Electromagnetic Welding—Report 1: Electromagnetic Welding of Aluminum Tube to Aluminum or Dissimilar Metal Cores, Trans. Jpn. Weld. Soc., 1985, 16(2), p 110–116Google Scholar
  20. 20.
    A.A. Efimenko, E.I. Belenkii, A.V. Kalenichenko, and Y.A.D. Korol, Examination of the Interface of Cu/Al Pipes Welded by MPW, Weld. Prod. (USSR), 1985, 32(10), p 30–31Google Scholar
  21. 21.
    K. Tamaki and M. Kojima, Factors Affecting the Result of Electromagnetic Welding of Aluminum Tube, Trans. Jpn. Weld. Soc., 1988, 19(1), p 53–59Google Scholar
  22. 22.
    Y.U.A. Sergeeva, V.A. Chudakov, and G.N. Gordon, Examination of the Transition Zone in Magnetic Pulse Welded Joints Between Aluminum and Copper, Paton Weld. J., 1989, 1(12), p 874–877Google Scholar
  23. 23.
    L.I. Markashova, Y.A. Sergeeva, V.V. Statsenko, and V.A. Chudakov, Special Features of the Mechanism of Structure Formation in Magnetic Pulsed Welding, Paton Weld. J., 1991, 3(3), p 187–191Google Scholar
  24. 24.
    V.A. Glouschenkov, V.F. Karpouchin, and V.A. Pesotsky, Achievements in Magnetic Pulse Welding and Assembly of Tubular Structures, JOM, 1993, 6, p 473–484Google Scholar
  25. 25.
    H. Hokari, T. Sato, K. Kawauchi, and A. Muto, Magnetic Impulse Welding of Aluminum Tube and Copper Tube with Various Core Materials, Weld. Int., 1998, 12(8), p 619–626CrossRefGoogle Scholar
  26. 26.
    G.R. Cowan, O.R. Bergmann, and A.H. Holzman, Mechanism of Bond Zone Wave Formation in Explosion-Clad Metals, Metall. Trans., 1971, 2(11), p 3145–3155CrossRefGoogle Scholar
  27. 27.
    K.K. Botros and T.K. Groves, Characteristics of the Wavy Interface and the Mechanism of Its Formation in High-Velocity Impact Welding, J. Appl. Phys., 1980, 51(7), p 3715–3721CrossRefGoogle Scholar
  28. 28.
    R.A. Patterson, Fundamentals of Explosion Welding, ASM Handbook—Welding, Brazing and Soldering, Vol 6, 1993, p 160–164 and 303–305Google Scholar
  29. 29.
    A. Oberg, N. Martensson, and J.A. Schweitz, Fundamental Aspects of Formation and Stability of Explosive Welds, Metall. Trans. A., 1985, 16A, p 841–852CrossRefGoogle Scholar
  30. 30.
    A. Mousavi and S.T.S. Al-Hassani, Numerical and Experimental Studies of the Mechanism of the Way Interface Formations in Explosive/Impact Welding, J. Mech. Phys. Solid, 2005, 53, p 2501–2528CrossRefGoogle Scholar
  31. 31.
    M. Marya, S. Marya, and D. Priem, On the Characteristics of Electromagnetic Welds between Aluminum and Other Metals and Alloys, Weld. World, 2005, 49(5-6), p 74–84CrossRefGoogle Scholar
  32. 32.
    T. Aizawa, M. Kashani, and K. Okagawa, Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheet Joints, Weld. J., 2007, 86, p 119s–124sGoogle Scholar
  33. 33.
    M. Chizari, S.T.S. Al-Hassani, and L.M. Barrett, Effect of Flyer Shape on the Bonding Criteria in Impact Welding of Plates, J. Mater. Process. Technol., 2009, 209(1), p 445–454CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, S.S. Babu, C. Prothe, M. Blakely, J. Kwasegroch, M. LaHa, and G.S. Daehn, Application of High Velocity Impact Welding at Varied Different Length Scales, J. Mater. Process. Technol., 2011, 211(5), p 944–952CrossRefGoogle Scholar
  35. 35.
    S.D. Kore, P. Dhanesh, S.V. Kulkarni, and P.P. Date, Numerical Modeling of Electromagnetic Welding, Int. J. Appl. Electromagn. Mech., 2010, 32(1), p 1–19Google Scholar
  36. 36.
    S.D. Kore, P.P. Date, and S.V. Kulkarni, Effect of Process Parameters on Electromagnetic Impact Welding of Aluminum Sheets, Int. J. Impact Eng., 2007, 34(8), p 1327–1341CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, S.S. Babu, and G.S. Daehn, Interfacial Ultrafine-Grained Structures on Aluminum alloy 6061 Joint and Copper Alloy 110 Joint Fabricated by Magnetic Pulse Welding, J. Mater. Sci., 2010, 45(17), p 4645–4651CrossRefGoogle Scholar
  38. 38.
    S.D. Kore, J. Imbert, M.J. Worswick, and Y. Zhou, Electromagnetic Impact Welding of Mg to Al Sheets, Sci. Technol. Weld. Join., 2009, 14(6), p 549–553CrossRefGoogle Scholar
  39. 39.
    M. Watanabe and S. Kumai, Interfacial Morphology of Magnetic Pulse Welded Aluminum/Aluminum and Copper/Copper Lap Joints, Mater. Trans., 2009, 50(2), p 286–292CrossRefGoogle Scholar
  40. 40.
    M. Watanabe and S. Kumai, High-Speed Deformation and Collision Behavior of Pure Aluminum Plates in Magnetic Pulse Welding, Mater. Trans., 2009, 50(8), p 2035–2042CrossRefGoogle Scholar
  41. 41.
    S.V. Desai, S. Kumar, P. Satyamurthy, J.K. Chakravartty, and D.P. Chakravarthy, Scaling Relationships for Input Energy in Electromagnetic Welding of Similar and Dissimilar Metals, J. Electromagn. Anal. Appl., 2010, 2, p 563–570Google Scholar
  42. 42.
    S.D. Kore, P.P. Date, S.V. Kulkarni, S. Kumar, D. Rani, M.R. Kulkarni, S.V. Desai, R.K. Rajawat, K.V. Nagesh, and D.P. Chakravarty, Electromagnetic Impact Welding of Copper-to-Copper Sheets, Int. J. Mater. Form., 2010, 3, p 117–121CrossRefGoogle Scholar
  43. 43.
    Y. Zhang, S. Babu, and G. S. Daehn, Impact Welding in a Variety of Geometric Configurations, 4th International Conference on High Speed Forming, 2010, p 97–107Google Scholar
  44. 44.
    A. Berlin, T.C. Nguyen, M.J. Worswick, and Y. Zhou, Metallurgical Analysis of Magnetic Pulse Welds of AZ31 Magnesium Alloy, Sci. Technol. Weld. Join., 2011, 16(8), p 728–734CrossRefGoogle Scholar
  45. 45.
    Y. Livshitz, O. Gafri, B. Spitz, and V. Shribman, Magnetic Pulse Welding of Magnesium, Magnesium-2000: Second International Conference on Magnesium Science and Technology, 2000, p 464–471Google Scholar
  46. 46.
    M. Kimchi, H. Shao, W. Cheng, and P. Krishnaswamy, Magnetic Pulse Welding Aluminium Tubes to Steel Bars, Weld. World, 2004, 48(3-4), p 19–22CrossRefGoogle Scholar
  47. 47.
    A. Ben-Artzy, A. Stern, N. Frage, and V. Shribman, MPW of Dissimilar Metal Couples, Welding and Joining—2005. Front. Mater. Join., 2005, p 246Google Scholar
  48. 48.
    A. Ben-Artzy, A. Stern, N. Frage, and V. Shribman, Interface Phenomena in Aluminum Magnesium Magnetic Pulse Welding, Sci. Technol. Weld. Join., 2008, 13(4), p 402–408CrossRefGoogle Scholar
  49. 49.
    K. Faes, T. Baaten, W. De Waele, and N. Debroux, Joining of Copper to Brass Using Magnetic Pulse, Welding 4th International Conference on High Speed Forming, 2010, p 84–96Google Scholar
  50. 50.
    G. Göbel, J. Kaspar, T. Herrmannsdörfer, B. Brenner, and E. Beyer, Insights into intermetallic Phases on Pulse Welded Dissimilar Metal Joints, Welding 4th International Conference on High Speed Forming, 2010, p 127–136Google Scholar
  51. 51.
    X. Zhidan, C. Junjia, Y. Haiping, and L. Chunfeng, Research on the Impact Velocity of Magnetic Impulse Welding of Pipe Fitting, Mater. Des., 2013, 49, p 736–745CrossRefGoogle Scholar
  52. 52.
    P. Zhang, M. Kimchi, H. Shao, J.E. Gould, and G.S. Daehn, Analysis of the Electromagnetic Impulse Joining Process with a Field Concentrator, AIP Conf. Proc., 2004, 712, p 1253–1258CrossRefGoogle Scholar
  53. 53.
    S. Kakizaki, M. Watanabe, and S. Kumai, Simulation and Experimental Analysis of Metal Jet Emission and Weld Interface Morphology in Impact Welding, Mater. Trans., 2011, 52(5), p 1003–1008CrossRefGoogle Scholar
  54. 54.
    J.L. Robinson, Fluid Mechanics of Copper: Viscous Energy Dissipation in Impact Welding, J. Appl. Phys., 1977, 48(6), p 2202–2207CrossRefGoogle Scholar
  55. 55.
    T.A. Palmer, J.W. Elmer, D. Brasher, D. Butler, and R. Riddle, Development of an Explosive Welding Process for Producing High-Strength Welds Between Niobium and 6061-T651 Aluminum, Weld. J., 2006, 85(11), p 252s–263sGoogle Scholar
  56. 56.
    R.N. Raoelison, N. Buiron, M. Rachik, D. Haye, and G. Franz, Efficient Welding Conditions in Magnetic Pulse Welding Process, J. Manuf. Proc., 2012, 14(3), p 372–377CrossRefGoogle Scholar
  57. 57.
    A. Stern, M. Aizenshtein, V. Shribman, and O. Gafri, A Study of the Interface in Magnetic Pulse Welding of Dissimilar Metals, Proceedings of Welding and Joining—2000: New Materials and New Perspectives, 2000, p 62–64Google Scholar
  58. 58.
    A. Stern, U. Admon, M. Aizenshtein, V. Shribman, Y. Livshitz, and O. Gafri, Bond Structure in Electromagnetic Pulse Welding of Similar and Dissimilar Metals, Proc. Eurojoin, 2001, 4, p 75–82Google Scholar
  59. 59.
    A. Stern and M. Aizenshtein, On the Bonding Zone Formation in Magnetic Pulse Welds, Sci. Technol. Weld. Join., 2002, 7(5), p 339–342CrossRefGoogle Scholar
  60. 60.
    M. Watanabe, S. Kumai, G. Hagimoto, Q. Zhang, and K. Nakayama, Interfacial Microstructure of Aluminum/Metallic Glass Lap Joints Fabricated by Magnetic Pulse Welding, Mater. Trans., 2009, 50(6), p 1279–1285CrossRefGoogle Scholar
  61. 61.
    G. Göbel, E. Beyer, J. Kaspar, and B. Brenner, Dissimilar Metal Joining: Macro- and Microscopic Effects of MPW, 5th International Conference on High Speed Forming, 2012, p 179–188Google Scholar
  62. 62.
    Y. Haiping, X. Zhidan, F. Zhisong, Z. Zhixue, and L. Chunfeng, Mechanical Property and Microstructure of Aluminum Alloy—Steel Tubes Joint by Magnetic Pulse Welding, Mater. Sci. Eng. A, 2013, 561(20), p 259–265Google Scholar
  63. 63.
    A. Stern, M. Aizenshtein, G. Moshe, S.R. Cohen, and N. Frage, The Nature of Interfaces in Al-1050/Al-1050 and Al-1050/Mg-AZ31 Couples Joined by Magnetic Pulse Welding (MPW), J. Mater. Eng. Perform., 2013, 22(7), p 2098–2103CrossRefGoogle Scholar
  64. 64.
    A. Stern and M. Aizenshtein, Magnetic pulse welding of Al to Mg alloys: structural mechanical properties of the interfacial layer, Mater. Sci. Technol., 2011, 27(12), p 1809–1813CrossRefGoogle Scholar
  65. 65.
    A. Ben-Artzy, A. Stern, N. Frage, V. Shribman, and O. Sadot, Wave Formation Mechanism in Magnetic Pulse Welding, Int. J. Impact Eng., 2010, 37(4), p 397–404CrossRefGoogle Scholar
  66. 66.
    G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1961, p 64Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • A. Stern
    • 1
  • V. Shribman
    • 2
  • A. Ben-Artzy
    • 3
  • M. Aizenshtein
    • 3
  1. 1.Department of Materials EngineeringBen-Gurion UniversityBeer-ShebaIsrael
  2. 2.Bmax SRLToulouseFrance
  3. 3.NRC-NegevBeer-ShebaIsrael

Personalised recommendations