Advertisement

Journal of Materials Engineering and Performance

, Volume 23, Issue 9, pp 3108–3125 | Cite as

Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel: A Computational Investigation

  • M. Grujicic
  • J. S. Snipes
  • R. Galgalikar
  • S. Ramaswami
  • R. Yavari
  • C.-F. Yen
  • B. A. Cheeseman
Article

Abstract

In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.

Keywords

ballistic limit gas metal arc welding (GMAW) process modeling welded all-metal armor 

Notes

Acknowledgments

The material presented in this paper is based on work supported by two Army Research Office sponsored grants entitled “Friction Stir Welding Behavior of Selected 2000-series and 5000-series Aluminum Alloys” (Contract Number W911NF-11-1-0207), and “Concept Validation and Optimization for a Vent-based Mine-blast Mitigation System” (Contract Number W911NF-11-1-0518). The authors are indebted to Dr. Ralph A. Anthenien, Jr. and Dr. Bryan Glaz of ARO for their continuing support and interest in the present work.

References

  1. 1.
    M. Grujicic, S. Ramaswami, J.S. Snipes, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Multi-physics Modeling and Simulations of MIL A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process, J. Mater. Eng. Perform., 2013, 22, p 2950–2969CrossRefGoogle Scholar
  2. 2.
    M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI, 1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform., 2012, 22, p 1209–1222CrossRefGoogle Scholar
  3. 3.
    M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C.F. Yen, B.A. Cheeseman, and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22, p 1541–1557CrossRefGoogle Scholar
  4. 4.
    M.G.H. Wells, R.K. Weiss, and J.S. Montgomery, “LAV Armor Plate Study”, MTL TR 92-26, U.S. Army Materials Technology Laboratory, Watertown, MA, 1992Google Scholar
  5. 5.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224, p 1–16CrossRefGoogle Scholar
  6. 6.
    M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224, p 609–625CrossRefGoogle Scholar
  7. 7.
    M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19, p 672–684CrossRefGoogle Scholar
  8. 8.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20, p 11–23CrossRefGoogle Scholar
  9. 9.
    M. Grujicic, G. Arakere, C.F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20, p 1097–1108CrossRefGoogle Scholar
  10. 10.
    M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRefGoogle Scholar
  11. 11.
    M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796CrossRefGoogle Scholar
  12. 12.
    M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRefGoogle Scholar
  13. 13.
    M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRefGoogle Scholar
  14. 14.
    M. Gore, M. Grujicic, and G.B. Olson, Thermally Activated Grain Boundary Motion Through a Dispersion of Particles, Acta Metall., 1989, 37, p 2849–2854CrossRefGoogle Scholar
  15. 15.
    W.S. Owen and M. Grujicic, Encyclopedia of Materials Science and Engineering, Section—“Plastic Deformation: Thermally Activated Glide of Dislocations”, Pergamon Press, Oxford, UK, 1986, p 3540–3543Google Scholar
  16. 16.
    R.L. Fleischer, Substitutional Solution Hardening, Acta Metall. Mater., 1963, 11, p 203–209CrossRefGoogle Scholar
  17. 17.
    R. Labusch, A Statistical Theory of Solid Solution Hardening, Phys. Status Solidi, 1970, 41, p 659–669CrossRefGoogle Scholar
  18. 18.
    M.F. Ashby, On the Orowan Stress, M.F. Ashby, Ed., The M.I.T. Press, Cambridge, MA, 1969, p 113–131 Google Scholar
  19. 19.
    M. Takahashi and H.K.D.H. Bhadeshia, Model for Transition from Upper Bainite to Lower Bainite, Mater. Sci. Technol., 1990, 6, p 592–603CrossRefGoogle Scholar
  20. 20.
    A.S. Keh and S. Weissman, Deformation Structure in Body-Centered Cubic Metals, A.S. Keh and S. Weissman, Ed., Interscience, New York, 1963, p 231–300 Google Scholar
  21. 21.
    W.C. Leslie, J.T. Michalak, and F.W. Aul, The Annealing of Cold-Worked Iron, W.C. Leslie, J.T. Michalak, and F.W. Aul, Ed., Interscience, Detroit, 1961, p 119–212 Google Scholar
  22. 22.
    R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing Co., Boston, MA, 1992Google Scholar
  23. 23.
    M.F. Ashby and D.R.H. Jones, Engineering Materials: An Introduction to Their Properties and Application, Pergamon Press, New York, 1980Google Scholar
  24. 24.
    J.S. Unfried, C.M. Garzón, and J.E. Giraldo, Numerical and Experimental Analysis of Microstructure Evolution During Arc Welding in Armor Plate Steels, J. Mater. Process. Technol., 2009, 209, p 1688–1700CrossRefGoogle Scholar
  25. 25.
    Cambridge Engineering Selector, http://www.grantadesign.com/. Accessed December 31, 2013.
  26. 26.
    A.M. Sarosiek, M. Grujicic, and W.S. Owen, The Importance of the Heterogeneity of the Deformation in the Ferrite Phase of a Dual-Phase Steel, Scripta Metall., 1984, 8, p 353–356CrossRefGoogle Scholar
  27. 27.
    G.G. Corbett, S.R. Reid, and W. Johnson, Impact Loading of Plates and Shells by Free-Flying Projectiles: A Review, Int. J. Impact Eng., 1996, 18, p 141–230CrossRefGoogle Scholar
  28. 28.
    K.S. Kumar, D. Singh, and T. Bhat, Studies on Aluminum Armour Plates Impacted by Deformable and Non-deformable Projectiles, Mater. Sci. Forum, 2004, 465–466, p 79–84CrossRefGoogle Scholar
  29. 29.
    T. Børvik, O.S. Hopperstad, and K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions, Int. J. Impact Eng., 2010, 37, p 537–551CrossRefGoogle Scholar
  30. 30.
    T. Børvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, and M. Langseth, Perforation of AA5083-H116 Aluminium Plates with Conical-Nose Steel Projectiles—Calculations, Int. J. Impact Eng., 2009, 36, p 426–437CrossRefGoogle Scholar
  31. 31.
    M.R. Edwards and A. Mathewson, The Ballistic Properties of Tool Steel as a Potential Improvised Armor Plate, Int. J. Impact Eng., 1997, 19, p 297–309CrossRefGoogle Scholar
  32. 32.
    M.J. Forrestal, V.K. Luk, and N.S. Brar, Penetration of Aluminum Armor Plates with Conical-Nose Projectiles, Mechanics, 1990, 10, p 97–105Google Scholar
  33. 33.
    A.J. Piekutowski, M.J. Forrestal, K.L. Poormon, and T.L. Warren, Ogive-Nose Steel Rods at Normal, Int. J. Impact Eng., 1996, 18, p 877–887CrossRefGoogle Scholar
  34. 34.
    T. Børvik, A.H. Clausen, O.S. Hopperstad, and M. Langseth, Perforation of AA5083-H116 Aluminium Plates with Conical-Nose Steel Projectiles—Experimental Study, Int. J. Impact Eng., 2004, 30, p 367–384CrossRefGoogle Scholar
  35. 35.
    A.H. Chausen, T. Børvik, O.S. Hopperstad, and A. Benallal, Tore Flow and Fracture Characteristics of Aluminium Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality, Mater. Sci. Eng., 2004, A364, p 260–272Google Scholar
  36. 36.
    T. Børvik, J.R. Leinum, J.K. Solberg, O.S. Hopperstad, and M. Langseth, Observations on Shear Plug Formation in Weldox 460 E Steel Plates Impacted by Blunt-Nosed Projectiles, Int. J. Impact Eng., 2001, 25, p 553–572CrossRefGoogle Scholar
  37. 37.
    A.P. Rybakov, Spall in Non-one-dimensional Shock Waves, Int. J. Impact Eng., 2000, 24, p 1041–1082CrossRefGoogle Scholar
  38. 38.
    M. Grujicic, G.B. Olson, and W.S. Owen, Kinetics of Martensitic Interface Motion, Proc. ICOMAT-82, Leuven, Belgium, J. Physique, 1982, 43(Suppl. 12), pp. C4-173–179Google Scholar
  39. 39.
    M. Grujicic and G. Haidemenopoulos, Treatment of Paraequilibrium Thermodynamics in an AF1410 Steel Using the Thermo-Calc Software and Database, Calphad, 1988, 12(3), pp. 219–224Google Scholar
  40. 40.
    M. Grujicic, I.J. Wang, and W.S. Owen, On the Formation of Duplex Precipitate Phases in an Ultra-low Carbon Micro-alloyed Steel, Calphad, 1988, 12(3), pp. 261–275Google Scholar
  41. 41.
    M. Grujicic, G. Cao, and G.M. Fadel, “Effective Materials Properties: Determination and Application in Mechanical Design and Optimization,” J. Mater.: Des. Appl., 2002, 215, pp. 225–234Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • M. Grujicic
    • 1
  • J. S. Snipes
    • 1
  • R. Galgalikar
    • 1
  • S. Ramaswami
    • 1
  • R. Yavari
    • 1
  • C.-F. Yen
    • 2
  • B. A. Cheeseman
    • 2
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Survivability Materials BranchArmy Research LaboratoryAberdeenUSA

Personalised recommendations