Journal of Materials Engineering and Performance

, Volume 23, Issue 8, pp 2787–2794 | Cite as

Physicochemical Properties of Spray-Deposited CoFe2O4 Thin Films

Article

Abstract

Cobalt ferrite thin films are deposited onto quartz glass substrates by chemical spray pyrolysis technique at different substrate temperatures using ferric nitrate and cobalt nitrate as precursors. Thermogravimetric analysis (TGA) study indicates the formation of CoFe2O4 by decomposition of cobalt and ferric nitrates after 800 °C. X-ray diffraction studies reveal that annealed films are polycrystalline in nature and exhibit spinel cubic crystal structure. Crystallite size varies from 39 to 44 nm with the substrate temperatures. Direct optical band gap energy of CoFe2O4 thin films is found to be 2.57 eV. The AFM images show that roughness and grain size of the CoFe2O4 thin film are about 9 and 138 nm, respectively. The measured DC resistivity of the deposited thin films indicates that as temperature increases the resistivity decreases indicating the semiconductor nature of the films. Decrease in dielectric constant (ε′) and loss tangent (tanδ) has been observed with frequency and attains the constant value at higher frequencies. The AC conductivity of cobalt ferrite thin films increases with increase in frequency. Thus, the prepared films show normal dielectric performance of the spinel ferrite thin film. Room-temperature complex impedance spectra show the incomplete semicircles as films exhibit high resistance values at lower frequencies.

Keywords

AFM CoFe2O4 thin films dielectric properties spray pyrolysis temperature 

Notes

Acknowledgments

Authors are very thankful to the council of scientific and industrial research (CSIR), New Delhi, for the financial support through its Project No. “03(1284)/13/EMR-II.” Also authors are very thankful to the University Grants Commission (UGC), New Delhi, for the financial support through its Project No. “41-869/2012 (SR)”. One of the author V.V. Ganbavle is thankful to University Grants Commission, New Delhi for providing financial support through UGC-BSR fellowship.

References

  1. 1.
    X. Sui and M.H. Kryder, Magnetic Easy Axis Randomly Inplane Oriented Barium Hexaferrite Thin Film Media, Appl. Phys. Lett., 1993, 63, p 1582–1584CrossRefGoogle Scholar
  2. 2.
    T. Kiyomura, Y. Maruo, and M. Gomi, Electrical Properties of MgO Insulating Layers in Spin-Dependent Tunnelling Junctions Using Fe3O4, J. Appl. Phys., 2000, 88, p 4768–4771CrossRefGoogle Scholar
  3. 3.
    A. Morisako, H. Nakanishi, M. Matsumoto, and M. Naoe, Low Temperature Deposition of Hexagonal Ferrite Films by Sputtering, J. Appl. Phys., 1994, 75, p 5969–5971CrossRefGoogle Scholar
  4. 4.
    S.D. Bhame and P.A. Joy, Magnetic and Magnetostrictive Properties of Manganese Substituted Cobalt Ferrite, J. Phys. D Appl. Phys., 2007, 40, p 3263–3267CrossRefGoogle Scholar
  5. 5.
    T. Dhakal, D. Mukherjee, R. Hyde, P. Mukherjee, M.H. Phan, H. Srikanth, and S. Witanachchi, Magnetic Anisotropy and Field Switching in Cobalt Ferrite Thin Films Deposited by Pulsed Laser Ablation, J. Appl. Phys., 2010, 107, p 053914CrossRefGoogle Scholar
  6. 6.
    F. Tudorache, P.D. Popa, M. Dobromir, and F. Iacomi, Studies on the Structure and Gas Sensing Properties of Nickel-Cobalt Ferrite Thinfilms Prepared by Spin Coating, Mater. Sci. Eng. B, 2013, 178, p 1334–1338CrossRefGoogle Scholar
  7. 7.
    A. Fujiwara, M. Tada, T. Nakagawa, and M. Abe, Permeability and Electric Resistivity of Spin-Sprayed Zn Ferrite Films for High-Frequency Device Applications, J. Magn. Magn. Mater., 2008, 320, p L67–L69CrossRefGoogle Scholar
  8. 8.
    G. Dascalu, G. Pompilian, B. Chazallon, O.F. Caltun, S. Gurlui, and C. Focsa, Femtosecond Pulsed Laser Deposition of Cobalt Ferrite Thin Films, Appl. Surf. Sci., 2013, 278, p 38–42CrossRefGoogle Scholar
  9. 9.
    J.G. Lee, K.P. Chae, and J.C. Sur, Surface Morphology and Magnetic Properties of CoFe2O4 Thin Films Grown by a RF Magnetron Sputtering Method, J. Magn. Magn. Mater., 2003, 267, p 161–167CrossRefGoogle Scholar
  10. 10.
    J. Sun, Z. Wang, Y. Wang, Y. Zhu, T. Shen, L. Pang, K. Wei, and F. Li, Synthesis of the Nanocrystalline CoFe2O4 Ferrite Thin Films by a Novel Sol-Gel Method Using Glucose as an Additional Agent, Mater. Sci. Eng. B, 2012, 177, p 269–273CrossRefGoogle Scholar
  11. 11.
    L.X. Phua, F. Xu, Y.G. Ma, and C.K. Ong, Structure and Magnetic Characterizations of Cobalt Ferrite Films Prepared by Spray Pyrolysis, Thin Solid Films, 2009, 517, p 5858–5861CrossRefGoogle Scholar
  12. 12.
    A. Sutka, G. Strikis, G. Mezinskis, A. Lusis, J. Zavickis, J. Kleperis, and D. Jakovlevs, Properties of Ni-Zn Ferrite Thin Films Deposited Using Spray Pyrolysis, Thin Solid Films, 2012, 526, p 65–69CrossRefGoogle Scholar
  13. 13.
    S.S. Bellad and C.H. Bhosale, Substrate Temperature Dependent Properties of Sprayed CoFe2O4 Ferrite Thin Films, Thin Solid Films, 1998, 322, p 93–97CrossRefGoogle Scholar
  14. 14.
    R. Sayed Hassan, N. Viart, C. Bouillet, J.L. Loison, G. Versini, J.P. Vola, O. Crégut, G. Pourroy, D. Muller, and D. Chateigner, Structural Properties of Cobalt Ferrite Thin Films Deposited by Pulsed Laser Deposition: Effect of the Reactive Atmosphere, Thin Solid Films, 2007, 515, p 2943–2948CrossRefGoogle Scholar
  15. 15.
    A. Takayama, M. Okuya, and S. Kaneko, Spray Pyrolysis Deposition of NiZn Ferrite Thin Films, Solid State Ion., 2004, 172, p 257–260CrossRefGoogle Scholar
  16. 16.
    M. Milanova, I. Koleva, R. Todorovska, J. Zaharieva, M. Кostadinov, and D. Todorovsky, Polymetallic Citric Complexes as Precursors for Spray-Pyrolysis Deposition of Thin Ferrite Films, Appl. Surf. Sci., 2011, 257, p 7821–7826CrossRefGoogle Scholar
  17. 17.
    C.L. Chow, H. Huang, W.C. Ang, H. Liu, Y. Huang, M.S. Tse, and O.K. Tan, Effect of Annealing Temperature on the Crystallization and Oxygen Sensing Property of Strontium Titanate Ferrite Sol-Gel Thin Films, Sens. Actuators B, 2013, 187, p 20–26CrossRefGoogle Scholar
  18. 18.
    K. Mukherjee and S.B. Majumder, Analyses of Response and Recovery Kinetics of Zinc Ferrite as Hydrogen Gas Sensor, J. Appl. Phys., 2009, 106, p 064912CrossRefGoogle Scholar
  19. 19.
    A. Chapelle, F. Oudrhiri-Hassani, L. Presmanes, A. Barnab, and Ph. Tailhades, CO2 Sensing Properties of Semiconducting Copper Oxide and Spinel Ferrite Nanocomposite Thin Film, Appl. Surf. Sci., 2010, 256, p 4715–4719CrossRefGoogle Scholar
  20. 20.
    P.S. Patil, Versatility of Chemical Spray Pyrolysis Technique, Mater. Chem. Phys., 1999, 59, p 185–198CrossRefGoogle Scholar
  21. 21.
    S. Briceno, H.D. Castillo, V. Sagredo, W. Bramer-Escamilla, and P. Silva, Structural, Catalytic and Magnetic Properties of Cu1−XCoXFe2O4, Appl. Surf. Sci., 2012, 263, p 100–103CrossRefGoogle Scholar
  22. 22.
    X.-M. Liu, S.-Y. Fu, H.-M. Xiao, and C.-J. Huang, Synthesis of Nanocrystalline Spinel CoFe2O4 Via a Polymer-Pyrolysis Route, Phys. B, 2005, 370, p 14–21CrossRefGoogle Scholar
  23. 23.
    S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, and K.M. Jadhav, Electrical and Magnetic Properties of Cr3+ Substituted Nanocrystalline Nickel Ferrite, J. Appl. Phys., 2009, 106, p 023914CrossRefGoogle Scholar
  24. 24.
    A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, and K.Y. Rajpure, Sensing Properties of Sprayed Antimony Doped Tin Oxide Thin Films: Solution Molarity, J. Alloys Compd., 2011, 509, p 3108–3115CrossRefGoogle Scholar
  25. 25.
    R.J. Deokate, S.M. Pawar, A.V. Moholkar, V.S. Sawant, C.A. Pawar, C.H. Bhosale, and K.Y. Rajpure, Spray Deposition of Highly Transparent Fluorine Doped Cadmium Oxide Thin Films, Appl. Surf. Sci., 2008, 254, p 2187–2195CrossRefGoogle Scholar
  26. 26.
    F. Gozuak, Y. Koseoglu, A. Baykal, and H. Kavasa, Synthesis and Characterization of CoxZn1−xFe2O4 Magnetic Nanoparticles Via a PEG-Assisted Route, J. Magn. Magn. Mater., 2009, 321, p 2170–2177CrossRefGoogle Scholar
  27. 27.
    M.R. Begam, N.M. Rao, S. Kaleemulla, M. Shobana, N.S. Krishna, and M. Kuppan, Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation, J. Nanoelectron. Phys., 2013, 5, p 03019Google Scholar
  28. 28.
    V.M. Nikale, S.S. Shinde, C.H. Bhosale, and K.Y. Rajpure, Physical Properties of Spray Deposited CdTe Thin Films: PEC Performance, J. Semicond., 2011, 32, p 033001CrossRefGoogle Scholar
  29. 29.
    M.A. Mahadik, S.S. Shinde, K.Y. Rajpure, and C.H. Bhosale, Photocatalytic Oxidation of Rhodamine B with Ferric Oxide Thin Films under Solar Illumination, Mater. Res. Bull., 2013, 48, p 4058–4065Google Scholar
  30. 30.
    C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, and A. Talkenberger, Optical and Magneto-Optical Study of Nickel and Cobalt Ferrite Epitaxial Thin Films and Submicron Structures, J. Appl. Phys., 2013, 113, p 084101CrossRefGoogle Scholar
  31. 31.
    K.Y. Rajpure, C.D. Lokhande, and C.H. Bhosale, Effect of the Substrate Temperature on the Properties of Spray Deposited Sb-Se Thin Films from Non-aqueous Medium, Thin Solid Films, 1997, 311, p 114–118CrossRefGoogle Scholar
  32. 32.
    L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, and F. Schrank, Methods of Simulating Thin Film Deposition Using Spray Pyrolysis techniques, Microelectron. Eng., 2014, 117, p 57–66CrossRefGoogle Scholar
  33. 33.
    R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, and Y.D. Kolekar, Studies on Magnetic, Dielectric and Magnetoelectric Behavior of (x) NiFe1.9Mn0.1O4 and (1 − x) BaZr0.08Ti0.92O3 Magnetoelectric Composites, J. Alloys Compd., 2010, 489, p 310–315CrossRefGoogle Scholar
  34. 34.
    P.P. Hankare, R.P. Patil, U.B. Sankpal, S.D. Jadhav, I.S. Mulla, K.M. Jadhav, and B.K. Chougule, Magnetic and Dielectric Properties of Nanophase Manganese-Substituted Lithium Ferrite, J. Magn. Magn. Mater., 2009, 32, p 3270–3273CrossRefGoogle Scholar
  35. 35.
    V.S. Sawant, S.S. Shinde, R.J. Deokate, C.H. Bhosale, B.K. Chougule, and K.Y. Rajpure, Effect of Calcining Temperature on Electrical and Dielectric Properties of Cadmium Stannate, Appl. Surf. Sci., 2009, 255, p 6675–6678CrossRefGoogle Scholar
  36. 36.
    A.R. Babar, S.S. Shinde, A.V. Moholkar, and K.Y. Rajpure, Electrical and Dielectric Properties of Co-precipitated Nanocrystalline Tin Oxide, J. Alloys Compd., 2010, 505, p 743–749CrossRefGoogle Scholar
  37. 37.
    A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, and K.Y. Rajpure, Structural, Morphological, Electrical and Magnetic Properties of Dy Doped Ni-Co Substitutional Spinel Ferrite, J. Magn. Magn. Mater., 2013, 329, p 59–64CrossRefGoogle Scholar
  38. 38.
    G. Kumar, S. Sharma, R.K. Kotnala, J. Shah, S.E. Shirsath, K.M. Batoo, and M. Singh, Electric, Dielectric and AC Electrical Conductivity Study of Nanocrystalline Cobalt Substituted Mg-Mn Ferrites Synthesized Via Solution Combustion Technique, J. Mol. Struct., 1051, 2013, p 336–344Google Scholar
  39. 39.
    R.P. Mahajan, K.K. Patankar, M.B. Kothale, and S.A. Patil, Conductivity, Dielectric Behaviour and Magnetoelectric Effect in Copper Ferrite-Barium Titanate Composites, Bull. Mater. Sci., 2000, 23, p 273–279CrossRefGoogle Scholar
  40. 40.
    R.S. Devan, Y.D. Kolekar, and B.K. Chougule, Effect of Cobalt Substitution on the Properties of Nickel-Copper Ferrite, J. Phys. Condens. Matter, 2006, 18, p 9809–9821CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • A. A. Bagade
    • 1
  • V. V. Ganbavle
    • 1
  • K. Y. Rajpure
    • 1
  1. 1.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations