A Numerical Study of Material Parameter Sensitivity in the Production of Hard Metal Components Using Powder Compaction

  • Daniel C. Andersson
  • Per Lindskog
  • Hjalmar Staf
  • Per-Lennart Larsson


Modeling of hard metal powder inserts is analyzed based on a continuum mechanics approach. In particular, one commonly used cutting insert geometry is studied. For a given advanced constitutive description of the powder material, the material parameter space required to accurately model the mechanical behavior is determined. These findings are then compared with the corresponding parameter space that can possibly be determined from a combined numerical/experimental analysis of uniaxial die powder compaction utilizing inverse modeling. The analysis is pertinent to a particular WC/Co powder and the finite element method is used in the numerical investigations of the mechanical behavior of the cutting insert.


constitutive description finite element method hard metal inserts material characterization powder compaction 



This work was performed within the VINN Excellence center Hero-m, financed by VINNOVA, the Swedish Government Agency of Innovation Systems, Swedish Industry and KTH (the Royal Institute of Technology). We would also like to thank Dirk Sterkenburg, Seco Tools AB, for many interesting discussions.


  1. 1.
    M.F. Ashby, HIP6.0 Cambridge. UK: Engineering Department, Cambridge University, 1983.Google Scholar
  2. 2.
    N. Ogbonna, N. Fleck, and A. Cocks, Transient Creep Analysis of Ball Indentation, Int. J. Mech. Sci, 1995, 37, p 1179–1202CrossRefGoogle Scholar
  3. 3.
    P.L. Larsson, S. Biwa, and B. Storåkers, Analysis of Cold and Hot Isostatic Compaction of Spherical Particles, Acta Mater., 1996, 44, p 3655–3666CrossRefGoogle Scholar
  4. 4.
    B. Storåkers, N. Fleck, and R. McMeeking, The Viscoplastic Compaction of Composite Powders, J. Mech. Phys. Solids, 1999, 47, p 785–815CrossRefGoogle Scholar
  5. 5.
    P. Heyliger and R. McMeeking, Cold Plastic Compaction of Powders by a Network Model, J. Mech. Phys. Solids, 2001, 49, p 2031–2054CrossRefGoogle Scholar
  6. 6.
    C.L. Martin and D. Bouvard, Study of the Cold Compaction of Composite Powders by the Discrete Element Method, Acta Mater., 2003, 51, p 373–386CrossRefGoogle Scholar
  7. 7.
    C.L. Martin, D. Bouvard, and S. Shima, Study of Particle Rearrangement During Powder Compaction by the Discrete Element Method, J. Mech. Phys. Solids, 2003, 51, p 667–693CrossRefGoogle Scholar
  8. 8.
    O. Skrinjar and P.L. Larsson, On Discrete Element Modeling of Compaction of Powders with Size Ratio, Comput. Mater. Sci., 2004, 31, p 131–146CrossRefGoogle Scholar
  9. 9.
    O. Skrinjar and P.L. Larsson, Cold Compaction of Composite Powders with Size Ratio, Acta Mater., 2004, 52, p 1871–1884CrossRefGoogle Scholar
  10. 10.
    E. Olsson and P.-L. Larsson, A Numerical Analysis of Cold Powder Compaction Based on Micromechanical Experiments, Powder Technol., 2013, 243, p 71–78CrossRefGoogle Scholar
  11. 11.
    N. Fleck, On the Cold Compaction of Powders, J. Mech. Phys. Solids, 1995, 43, p 1409–1431CrossRefGoogle Scholar
  12. 12.
    B. Storåkers, S. Biwa, and P.L. Larsson, Similarity Analysis of Inelastic Contact, Int. J. Solids Struct., 1997, 34, p 3061–3083CrossRefGoogle Scholar
  13. 13.
    E. Olsson and P.-L. Larsson, On Force-Displacement Relations at Contact Between Elastic-Plastic Adhesive Bodies, J. Mech. Phys. Solids, 2013, 61, p 1185–1201CrossRefGoogle Scholar
  14. 14.
    O. Skrinjar, P.L. Larsson, and B. Storåkers, Local Contact Compliance Relations at Compaction of Composite Powders, J. Appl. Mech. Trans. ASME, 2007, 74, p 164–168CrossRefGoogle Scholar
  15. 15.
    A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth. 1. Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol. Trans. ASME, 1977, 1, p 2–15CrossRefGoogle Scholar
  16. 16.
    A. Schofield and C.P. Wroth, Critical State Soil Mechanics, McGraw-Hill, New York, 1968Google Scholar
  17. 17.
    F.L. DiMaggio and I.S. Sandler, Material Model for Granular Solids, J. Eng. Mech. Div. ASCE, 1971, 96, p 935–950Google Scholar
  18. 18.
    J. Brandt and L.G. Nilsson, A Constitutive Model for Compaction of Granular Media, with Account for Deformation Induced Anisotropy, Mech. Cohesive Frictional Mater., 1999, 4, p 391–418CrossRefGoogle Scholar
  19. 19.
    M. Mata and J. Alcala, Mechanical Property Evaluation Through Sharp Indentations in Elastoplastic and Fully Plastic Contact Regimes, J. Mater. Res., 2003, 18, p 1705–1709CrossRefGoogle Scholar
  20. 20.
    B. Wikman, Modelling and Simulation of Powder Pressing with Consideration of Friction. Ph.D. thesis; Department of Mechanical Engineering, Luleå University of Technology, Luleå, Sweden, 1999.Google Scholar
  21. 21.
    P. Jonsén and H.Å. Häggblad, Modelling and Numerical Investigation of the Residual Stress State in a Green Metal Powder body, Powder Technol., 2005, 155, p 196–208CrossRefGoogle Scholar
  22. 22.
    B. Wikman, G. Bergman, M. Oldenburg, and H.Å. Häggblad, Estimation of Constitutive Parameters for Powder Pressing by Inverse Modeling, Struct. Multi. Optim., 2006, 31, p 400–409CrossRefGoogle Scholar
  23. 23.
    M. Hrairi, H. Chtourou, A. Gakwaya, and M. Guillot, Modeling the Powder Compaction Process Using the Finite Element Method and Inverse Optimization, Int. J. Adv. Manuf. Technol., 2011, 56, p 631–647CrossRefGoogle Scholar
  24. 24.
    P. Lindskog, D.C. Andersson, and P.L. Larsson, An Experimental Device for Material Characterization of Powder Materials, J. Test. Eval., 2013, 41, p 504–516CrossRefGoogle Scholar
  25. 25.
    D.C. Andersson, P. Lindskog, and P.L. Larsson, Inverse Modeling Applied for Material Characterization of Powder Materials, J. Test. Eval., 2014 (accepted).Google Scholar
  26. 26.
    Sandvik Coromant AB. Private Communication, 2013.Google Scholar
  27. 27.
    P. Samuelson and B. Bolin, Experimental Studies of Frictional Behavior of Hard Metal Powders Sliding on Cemented Carbide Walls, Scand. J. Metall., 1983, 12, p 315–322Google Scholar
  28. 28.
    H.Å. Häggblad, Constitutive Models for Powder Materials, Powder Technol., 1991, 67, p 127–136CrossRefGoogle Scholar
  29. 29.
    O. Alm, Mechanical Testing of Powders and Powder Compacts, Scand. J. Metall., 1983, 12, p 302–311Google Scholar
  30. 30.
    J. Brandt, Adoption of the Compaction Model cmp97 to the h10f grade; 2000. Report No. 00.13, Ingenjörsdata AB.Google Scholar
  31. 31.
    J. Brandt, Comp+fract+sint model cmp02 implementation in ls-dyna; 2002. Report No. 02.01, Ingenjörsdata AB.Google Scholar
  32. 32.
    J.O. Hallquist. LS-DYNA Theory Manual, 2006.Google Scholar
  33. 33.
    D.C. Andersson, P.L. Larsson, A. Cadario, and P. Lindskog, On the Influence from Punch Geometry on the Stress Distribution at Powder Compaction, Powder Technol., 2010, 202, p 78–88CrossRefGoogle Scholar
  34. 34.
    N. Stander, W. Roux, T. Goel, T. Eggleston, and K. Craig, LS-OPT User’s Manual, version 4.2, 2012.Google Scholar
  35. 35.
    I.M. Sobol, Sensitivity Estimates for Nonlinear Mathematical Models, Math. Model. Comput. Exp., 1993, 4, p 407–413Google Scholar
  36. 36.
    J.H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA, 1992Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • Daniel C. Andersson
    • 1
  • Per Lindskog
    • 2
  • Hjalmar Staf
    • 2
  • Per-Lennart Larsson
    • 1
  1. 1.Department of Solid MechanicsRoyal Institute of TechnologyStockholmSweden
  2. 2.Sandvik Coromant ABStockholmSweden

Personalised recommendations