Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

  • M. Grujicic
  • R. Yavari
  • J. S. Snipes
  • S. Ramaswami
  • C. -F. Yen
  • B. A. Cheeseman
Article

Abstract

An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material constitutive models for Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material. The main effort was directed toward developing reliable material constitutive models for Carpenter Custom 465 and toward improving functional relations and parameterization of the workpiece/workpiece contact-interaction models. The LFW process model is then used to predict thermo-mechanical response of Carpenter Custom 465 during LFW. Specifically, temporal evolutions and spatial distribution of temperature within, and expulsion of the workpiece material from, the weld region are examined as a function of the basic LFW process parameters, i.e., (a) contact-pressure history, (b) reciprocation frequency, and (c) reciprocation amplitude. Examination of the results obtained clearly revealed the presence of three zones within the weld, i.e., (a) Contact-interface region, (b) Thermo-mechanically affected zone, and (c) heat-affected zone. While there are no publicly available reports related to Carpenter Custom 465 LFW behavior, to allow an experiment/computation comparison, these findings are consistent with the results of our ongoing companion experimental investigation.

Keywords

Carpenter Custom 465 precipitation-hardened martensitic stainless steel linear friction welding process modeling 

Notes

Acknowledgments

The initial portion of the work presented in the current manuscript was supported by the Army Research Office (ARO) through the grant W911NF-11-1-0207. The authors are indebted to Dr. Ralph A. Anthenien, Jr. of ARO for his continuing support and interest in the present work. The authors would also like to thank Dr. David Bowden for helpful discussions and encouragement.

References

  1. 1.
    A. Vairis and M. Frost, High Frequency Linear Friction Welding of a Titanium Alloy, Wear, 1998, 217, p 117–131CrossRefGoogle Scholar
  2. 2.
    A. Vairis and M. Frost, On the Extrusion Stage of Linear Friction Welding of Ti-6Al-4 V, J. Mater. Sci. Eng. A, 1999, 271, p 477–484CrossRefGoogle Scholar
  3. 3.
    A. Vairis and M. Frost, Modeling the Linear Friction Welding of Titanium Blocks, J. Mater. Sci. Eng. A, 2000, 292, p 8–17CrossRefGoogle Scholar
  4. 4.
    M. Corzo, Y. Torres, M. Anglada, and A. Mateo, Fracture Behaviour of Linear Friction Welds in Titanium Alloys, Anales de la Mecánica de Fractura, 2007, 1, p 75–80Google Scholar
  5. 5.
    O. Roder, J.-P. Ferte, E. Gach, J. Mendez, M. Anglada, and A. Mateo, Development and Validation of a Dual Titanium Alloy Dual Microstructure BLISK, Fifth Aeronautic Days 2006, Vienna, Austria, June 2006Google Scholar
  6. 6.
    P. Wanjara and M. Jahazi, Linear Friction Welding of Ti-6Al-4 V: Processing, Microstructure, and Mechanical-Property Inter-Relationships, Metall. Mater. Trans. A, 2005, 36, p 2149–2164CrossRefGoogle Scholar
  7. 7.
    W.Y. Li, T.J. Ma, Y. Zhang, Q.Z. Xu, J.L. Li, S.Q. Yang, and H.L. Liao, Microstructure Characterization and Mechanical Properties of Linear Friction Welded Ti-6Al-4 V Alloy, Adv. Eng. Mater., 2008, 10, p 89–92CrossRefGoogle Scholar
  8. 8.
    M. Karadge, M. Preuss, C. Lovell, P.J. Withers, and S. Bray, Texture Development in Ti-6Al-4 V Linear Friction Welds, J. Mater. Sci. Eng. A, 2007, 459, p 182–191CrossRefGoogle Scholar
  9. 9.
    M. Karadge, M. Preuss, P.J. Withers, and S. Bray, Importance of Crystal Orientation in Linear Friction Joining of Single Crystal to Polycrystalline Nickel-Based Superalloys, J. Mater. Sci. Eng. A, 2008, 491, p 446–453CrossRefGoogle Scholar
  10. 10.
    W.Y. Li, T.J. Ma, Q.Z. Xu, S.Q. Yang, Y. Zhang, J.L. Li, and H.L. Liao, Effect of Friction Time on Flash Shape and Axial Shortening of Linear Friction Welded 45 Steel, Mater. Lett., 2008, 62, p 293–296CrossRefGoogle Scholar
  11. 11.
    T.J. Ma, W.Y. Li, Q.Z. Xu, Y. Zhang, J.L. Li, S.Q. Yang, and H.L. Liao, Microstructure Evolution and Mechanical Properties of Linear Friction Welded 45 Steel Joint, Adv. Eng. Mater., 2007, 9, p 703–707CrossRefGoogle Scholar
  12. 12.
    P. Threadgill, Linear Friction Welding, TWI, Knowledge Summary, The Welding Institute, UK, 2008Google Scholar
  13. 13.
    I. Bhamji, M. Preuss, P.L. Threadgill, R.J. Moat, A.C. Addison, and M.J. Peel, Linear Friction Welding of AISI, 316L Stainless Steel, Mater. Sci. Eng. A, 2010, 528, p 680–690CrossRefGoogle Scholar
  14. 14.
    L. D’Alvise, E. Massoni, and S.J. Walløe, Finite Element Modeling of the Inertia Friction Welding Process Between Dissimilar Materials, J. Mater. Process. Technol., 2002, 125-126, p 387–391CrossRefGoogle Scholar
  15. 15.
    J. Sorina-Müller, M. Rettenmayr, D. Schneefeld, O. Roder, and W. Fried, FEM Simulation of the Linear Friction Welding of Titanium Alloys, Comput. Mater. Sci., 2010, 48, p 749–758CrossRefGoogle Scholar
  16. 16.
    M. Grujicic, A. Arakere, B. Pandurangan, C.-.F. Yen, and B.A. Cheeseman, Process Modeling of Ti-6Al-4 V Linear Friction Welding (LFW), J. Mater. Eng. Perform., 2012, 21, p 2011–2023CrossRefGoogle Scholar
  17. 17.
    A. Midha and D.E. Wert, “Custom 465 Stainless Sees Increased Use in a Wide Array of New and Existing Applications,” http://www.cartech.com/news.aspx?id=4262. Accessed on January 29, 2014
  18. 18.
    M. Grujicic, S. Tangrila, B.O. Cavin, W.D. Porter, and C.R. Hubbard, Effect of Iron Additions on Structure of Laves Phases in Nb-Cr-Fe Alloys, Mater. Sci. Eng., 1993, A160, p 37–48CrossRefGoogle Scholar
  19. 19.
    Technical datasheet for Carpenter Custom 465, http://cartech.ides.com/datasheet.aspx?I=101&E=55. Accessed on Jan 29, 2014
  20. 20.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321, J. Mater. Eng. Perform., 2011, 20, p 855–864CrossRefGoogle Scholar
  21. 21.
    M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRefGoogle Scholar
  22. 22.
    M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796Google Scholar
  23. 23.
    M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.-.F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRefGoogle Scholar
  24. 24.
    M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRefGoogle Scholar
  25. 25.
    M. Grujicic, B. Pandurangan, A. Arakere, C.-F. Yen, and B.A. Cheeseman, Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures under Ballistic Impact Loading Conditions, J. Mater. Eng. Perform., 2013, 22, p 30–40CrossRefGoogle Scholar
  26. 26.
    M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI1005 Steel during Gas Metal Arc Butt Welding, J. Mater. Eng. Perform., 2012, 22, p 1209–1222CrossRefGoogle Scholar
  27. 27.
    M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22, p 1541–1557CrossRefGoogle Scholar
  28. 28.
    M. Grujicic, S. Ramaswami, J.S. Snipes, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery, Multi-Physics Modeling and Simulations of MIL A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process, J. Mater. Eng. Perform., 2013, 22, p 2950–2969CrossRefGoogle Scholar
  29. 29.
    M. Awang, V. Mucino, Z. Feng, and S. David, Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW), SAE Technical Paper 2006-01-1392, 2006, doi: 10.4271/2006-01-1392
  30. 30.
    S.J. Na, J. Ruge, and K. Thomas, Temperature Determination During the Friction Welding of Dissimilar Materials in Cylindrical Form-Measurement and Calculation, Schweiss. Schneid., 1984, 36, p E43–E45Google Scholar
  31. 31.
    M. Grujicic, C.L. Zhao, and E.C. Dusel, The Effect of Thermal Contact Resistance on Heat Management in the Electronic Packaging, Appl. Surf. Sci., 2005, 246, p 290–302CrossRefGoogle Scholar
  32. 32.
  33. 33.
    ABAQUS Version 6.10-EF1, User Documentation, Dassault Systèmes, 2010Google Scholar
  34. 34.
    G. R. Johnson and W. H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983Google Scholar
  35. 35.
    British Stainless Steel Association, Elevated temperature physical properties of stainless steels, http://www.bssa.org.uk/topics.php?article=139. Accessed on January 29, 2014
  36. 36.
    K. Park, Development and Analysis of Ultrasonic Assisted Friction Stir Welding Process, Ph.D. dissertation, University of Michigan, 2009Google Scholar
  37. 37.
    W.S. Owen and M. Grujicic, Plastic Deformation: Thermally Activated Glide of Dislocations, Encyclopedia of Materials Science and Engineering, Pergamon Press, Oxford, England, p 3540–3543, 1986Google Scholar
  38. 38.
    M. Grujicic, G.B. Olson, and W.S. Owen, Kinetics of Martensitic Interface Motion, ICOMAT-82 (International Conference on Martensitic Transformations), J. Phys. Colloques, 1982, 43, p C4-173–C4-178Google Scholar
  39. 39.
    M. Grujicic, I.J. Wang, and W.S. Owen, Precipitate/Austenite Equilibrium in a Titanium-Niobium Ultra-low Carbon Steel, Calphad, 1986, 10, p 117–128Google Scholar
  40. 40.
    M. Grujicic, The Core Structure of a/2<110> Screw Dislocations in Fe-Ni-Cr-N Austenite, Mater. Sci. Eng. A, 1994, 183, p 223–232Google Scholar
  41. 41.
    M. Grujicic and J. Du, Atomistic Simulations of Transformation Toughening in Fe-Ni Austenite, Modelling Simul. Mater. Sci. Eng., 1995, 3, p 811–828Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • M. Grujicic
    • 1
  • R. Yavari
    • 1
  • J. S. Snipes
    • 1
  • S. Ramaswami
    • 1
  • C. -F. Yen
    • 2
  • B. A. Cheeseman
    • 2
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Army Research Laboratory – Survivability Materials BranchAberdeen, Proving GroundUSA

Personalised recommendations