Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires

  • Petr Šittner
  • Ludek Heller
  • Jan Pilch
  • Caroline Curfs
  • Thiery Alonso
  • Denis Favier
Article

Abstract

Young’s moduli of superelastic NiTi wires in austenite and stress-induced martensite states were evaluated by three different experimental methods (tensile tests, in situ synchrotron x-ray diffraction, and dynamic mechanical analysis) and estimated via theoretical calculation from elastic constants. The unusually low value of the Young’s modulus of the martensite phase appearing in material property tables (<40 GPa) is generally ascribed in the literature to the fact that stress-driven martensitic transformation and/or twinning processes continue even beyond the transformation range and effectively decrease the value of the tangent modulus evaluated from macroscopic stress-strain curve. In this work, we claim that this low value is real in the sense that it corresponds to the appropriate combination of elastic constants of the B19′ martensite phase forming the polycrystalline wire. However, the Young’s modulus of the martensite phase is low only for wire loaded in tension, not for compression or other deformation modes. It is shown that the low value of the martensite Young’s modulus in tension is due to the combination of the unique coincidence of elastic anisotropy of the B19′ martensite characterized by the low elastic constant C55, austenite drawing texture, and strong martensite texture due to the martensite variant selection under tensile stress.

Keywords

mechanical modeling and simulation non-ferrous metals 

References

  1. 1.
  2. 2.
    T. Alonso, D. Favier, G. Chagnon, P. Sittner, and Y. Liu, Dynamic Mechanical Spectroscopy of Nanograined Thin NiTi Wires, Proc. SMST, Prague, Czech Republic, 2013Google Scholar
  3. 3.
    P. Sedlak, H. Seiner, M. Landa, V. Novák, P. Šittner, and L.I. Manosa, Elastic Constants of bcc Austenite and 2H Orthorhombic Martensite in CuAlNi Shape Memory Alloy, Acta Mater., 2005, 53, p 3643–3661CrossRefGoogle Scholar
  4. 4.
    M. Landa, P. Sedlák, P. Šittner, H. Seiner, and V. Novák, Mater. Sci. Eng. A, 2007, 462, p 320–324CrossRefGoogle Scholar
  5. 5.
    M.F.-X. Wagner and W. Windl, Lattice Stability, Elastic Constants and Macroscopic Moduli of NiTi Martensites from First Principles, Acta Mater., 2008, 56, p 6232–6245CrossRefGoogle Scholar
  6. 6.
    P. Šesták, M. Černý, and J. Pokluda, Elastic Constants of Austenitic and Martensitic Phases of NiTi Shape Memory Alloy. In Recent Advances in Mechatronics 2008-2009, Springer, Berlin, 2009, p 1–6. ISBN 978-3-642-05021-3Google Scholar
  7. 7.
    N. Hatcher, O.Yu. Kontsevoi, and A.J. Freeman, Role of Elastic and Shear Stabilities in the Martensitic Transformation Path of NiTi, Phys. Rev. B, 2009, 80, p 144203CrossRefGoogle Scholar
  8. 8.
    P. Šittner, M. Landa, P. Lukáš, and V. Novák, R-Phase Transformation Phenomena in Thermomechanically Loaded NiTi Polycrystals, Mech. Mater., 2006, 38, p 475–492CrossRefGoogle Scholar
  9. 9.
    V. Novák, G.N. Dayananda, P. Šittner, F.M. Fernandes, and K.K. Mahesh, On the Electric Resistance Variation of NiTi and NiTiCu SMA Wires in Thermomechanical Cyclic Tests, Mater. Sci. Eng. A, 2008, 481-482, p 127–133CrossRefGoogle Scholar
  10. 10.
    A.P. Stebner, D.W. Brown, and L.C. Brinson, Young’s Modulus Evolution and Texture-Based Elastic-Inelastic Strain Partitioning During Large Uniaxial Deformations of Monoclinic Nickel-Titanium, Acta Mater., 2013, 61, p 1944–1956CrossRefGoogle Scholar
  11. 11.
    R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers, Microstructure Changes During Non-conventional Heat Treatment of Thin Ni-Ti Wires by Pulsed Electric Current Studied by Transmission Electron Microscopy, Acta Mater., 2010, 58, p 4503–4515CrossRefGoogle Scholar
  12. 12.
    K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater Sci., 2005, 50, p 511–678CrossRefGoogle Scholar
  13. 13.
    K.F. Hane and T.W. Shield, Microstructure in the Cubic to Monoclinic Transition in Titanium-Nickel Shape Memory Alloys, Acta Mater., 1999, 47(9), p 2603–2617CrossRefGoogle Scholar
  14. 14.
    H. Titrian, U. Aydin, M. Friák, D. Ma, D. Raabe, and J. Neugebauer, Self-Consistent Scale-Bridging Approach to Compute the Elasticity of Multi-Phase Polycrystalline Materials, Mater. Res. Soc. Symp. Proc., 2013, 1524 Google Scholar
  15. 15.
    G. Sheng, S. Bhattacharyya, H. Zhang, K. Chang, S.L. Shang, S.N. Mathaudhu, Z.K. Liu, and L.Q. Chen, Effective Elastic Properties of Polycrystals Based on Phase-Field Description, Mater. Sci. Eng. A, 2012, 554, p 67–71CrossRefGoogle Scholar
  16. 16.
    M. Kamaya, A Procedure for Estimating Young’s Modulus of Textured Polycrystalline Materials, Int. J. Solids Struct., 2009, 46, p 2642–2649CrossRefGoogle Scholar
  17. 17.
    X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Yu.I. Chumlyakov, and M. Asai, A Comparative Study of Elastic Constants of Ti-Ni-Based Alloys Prior to Martensitic Transformation, Mater. Sci. Eng., 2001, A312, p 196–206CrossRefGoogle Scholar
  18. 18.
    A.P. Stebner, D.W. Brown, and L.C. Brinson, Measurement of Elastic Constants of Monoclinic Nickel-Titanium and Validation of First Principles Calculations, Appl. Phys. Lett., 2013, 102, p 211908CrossRefGoogle Scholar
  19. 19.
    P. Šittner, P. Lukáš, V. Novák, M.R. Daymond, and G.M. Swallowe, In-Situ Neutron Diffraction Studies of Martensitic Transformations in NiTi Polycrystals Under Tension and Compression Stress, Mater. Sci. Eng. A, 2004, 378(1-2), p 97–104CrossRefGoogle Scholar
  20. 20.
    S. Rajagopalan, Al. Little, M.A.M. Bourke, and R. Vaidyanathan, Elastic Modulus of Shape-Memory NiTi from In Situ Neutron Diffraction During Macroscopic Loading, Instrumented Indentation, and Extensometry, Appl. Phys. Lett., 2005, 86(8), p 081901Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • Petr Šittner
    • 1
  • Ludek Heller
    • 1
  • Jan Pilch
    • 1
  • Caroline Curfs
    • 2
  • Thiery Alonso
    • 3
  • Denis Favier
    • 3
  1. 1.Institute of Physics ASCRPragueCzech Republic
  2. 2.ESRFGrenobleFrance
  3. 3.Université de GrenobleGrenobleFrance

Personalised recommendations