Advertisement

Development of Stress-Induced Martensitic Transformation in TiNi Shape Memory Alloy

  • Elzbieta Alicja Pieczyska
  • Maria Staszczak
  • Vladimir Dunić
  • Radovan Slavković
  • Hisaaki Tobushi
  • Kohei Takeda
Article

Abstract

TiNi shape memory alloy (SMA) was subjected to tension at strain-controlled test on quasistatic testing machine. The nucleation, development, and saturation of the stress-induced martensitic transformation were investigated, taking into account the obtained dependency of mechanical parameters and the specimen temperature changes measured by an infrared camera (IR). Three kinds of data obtained by the IR system were analyzed: the temperature distribution on the SMA sample surface, the temperature changes derived as average from the chosen sample area, and the temperature profiles obtained along the sample length. The temperature distribution shows nucleation of the transformation process and a creation of the transformation bands. The average temperature reflects the effects of thermomechanical coupling, accompanying exothermic martensitic forward and endothermic reverse transformation. The temperature profiles revealed the temperature difference between the band and the rest of the sample. The experimental results were supported with finite element method numerical analysis (FEM). The FEM software components for structural and heat transfer problems, coupled in partitioned approach, were used for thermomechanical analysis.

Keywords

finite element modeling infrared camera material testing martensitic transformation TiNi shape memory alloy tension thermomechanical couplings 

Notes

Acknowledgments

The research has been carried out with support of the KMM-VIN Research Fellowship; 1.08-13.09. 2013, Polish National Center of Science under Grant No. 2011/01/M/ST8/07754, (JSPS) Grant-in-Aid for Scientific Research (C) under No. 23560103 and Serbian Ministry of Education, Science and Technological Development under Grant No. Project TR32036 and III41007. Authors are grateful to Prof. Zenon Mroz for his valuable advice and comments. Also, authors thank to L. Urbanski for obtaining and processing the mechanical data and to M. Maj for recording and elaborating the thermograms and temperature changes.

References

  1. 1.
    K. Yamauchi, I. Ohkata, K. Tsuchya, and S. Miyazaki, Shape Memory and Superelastic Alloys, Woodhead Publishing Limited, Philadelphia, 2011CrossRefGoogle Scholar
  2. 2.
    E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, J. Luckner, and H. Tobushi, Martensite and Reverse Transformation During Simple Shear of NiTi Shape Memory Alloy, Strain, 2009, 45, p 93–100CrossRefGoogle Scholar
  3. 3.
    D. Favier, H. Louche, P. Schlosser, L. Orgeas, P. Vacher, and L. Debove, Homogeneous and Heterogeneous Deformation Mechanisms in Austenitic Polycrystalline Ti-50.8 at.%Ni Thin Tube Under Tension. Investigation Via Temperature and Strain Fields Measurements, Acta Mater., 2007, 55, p 5310–5322CrossRefGoogle Scholar
  4. 4.
    E.A. Pieczyska, Activity of Stress-Induced Martensite Transformation in Shape Memory Alloy Studied by Infrared Technique, J. Mod. Opt., 2010, 57, p 1700–1707CrossRefGoogle Scholar
  5. 5.
    E.A. Pieczyska, H. Tobushi, K. Kulasinski, and K. Takeda, Impact of Strain Rate on Thermomechanical Coupling Effects in TiNi SMA Subjected to Compression, Mater. Trans., 2012, 53, p 1905–1909CrossRefGoogle Scholar
  6. 6.
    J.A. Shaw and S. Kyriakides, On the Nucleation and Propagation of Phase Transformation Fronts in a TiNi Alloy, Acta Mater., 1997, 45, p 683–700CrossRefGoogle Scholar
  7. 7.
    G. Murasawa, M. Koushinbou, S. Yoneyama, T. Sakuma, and M. Takashi, Measurement of Inhomogeneous Deformation Behavior Arising in SMA, J. Soc. Mater. Sci., 2004, 53, p 999–1005CrossRefGoogle Scholar
  8. 8.
    L.C. Brinson, L. Schmidt, and R. Lammering, Stress-Induced Transformation Behavior of a Polycrystalline NiTi Shape Memory Alloy: Micro and Macromechanical Investigation Via in Situ Optical Microscopy, J. Mech. Phys. Solids, 2004, 52, p 1549–1571CrossRefGoogle Scholar
  9. 9.
    G. Tan, Y. Liu, P. Sittner, and M. Saunders, Luders-Like Deformation Associated with Stress-Induced Martensite Transformation in TiNi, Scr. Mater., 2004, 50, p 193–198CrossRefGoogle Scholar
  10. 10.
    E.A. Pieczyska, H. Tobushi, W.K. Nowacki, S.P. Gadaj, and T. Sakuragi, Subloop Deformation Behavior of TiNi Shape Memory Alloy Subjected to Stress-Controlled Loadings, Mater. Trans., 2007, 48, p 2679–2686CrossRefGoogle Scholar
  11. 11.
    S. Daly, G. Ravichandran, and K. Bhattacharya, Stress-Induced Martensitic Phase Transformation in Thin Sheets of Nitinol, Acta Mater., 2007, 55, p 3593–3600CrossRefGoogle Scholar
  12. 12.
    H.G. Matthies, R. Niekamp, and J. Steindorf, Algorithms for Strong Coupling Procedures, Comput. Methods Appl. Mech. Eng., 2006, 195(17–18), p 2028–2049CrossRefGoogle Scholar
  13. 13.
    M. Kojić, R. Slavković, M. Živković, and N. Grujović, PAK-S: Program for FE Structural Analysis, Faculty of Mechanical Engineering, University of Kragujevac, Kragujevac, 1999Google Scholar
  14. 14.
    M. Kojić, R. Slavković, M. Živković, and N. Grujović, PAK-T: Program for Heat Transfer Analysis, Faculty of Mechanical Engineering, University of Kragujevac, Kragujevac, 1999Google Scholar
  15. 15.
    R. Niekamp, CTL Manual for Linux/Unix for the Usage with C++, Institut für Wissenschaftliches Rechnen, TU Braunschweig, Germany, 2005Google Scholar
  16. 16.
    M. Kojić and K.J. Bathe, Inelastic Analysis of Solids and Structures, Computational Fluid and Solid Mechanics, Springer, Berlin, 2005Google Scholar
  17. 17.
    J.C. Simo and T.J.R. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics: Mechanics and Materials, Springer, Berlin, 1998Google Scholar
  18. 18.
    D.C. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive Model for the Numerical Analysis of Phase Transformation in Polycrystalline Shape Memory Alloys, Int. J. Plast., 2012, 32–33, p 2155–2183Google Scholar
  19. 19.
    D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, Springer, Berlin, 2010Google Scholar
  20. 20.
    M.A. Qidwai and D.C. Lagoudas, Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model Using Return Mapping Algorithms, Int. J. Numer. Method Eng., 2000, 6(47), p 1123–1168CrossRefGoogle Scholar
  21. 21.
    J.G. Boyd and D.C. Lagoudas, A Thermodynamical Constitutive Model for Shape Memory Materials. Part I. The Monolithic Shape Memory Alloy, Int. J. Plast., 1996, 12(6), p 805–842CrossRefGoogle Scholar
  22. 22.
    E.A. Pieczyska, Analiza doswiadczalna wlasciwosci termomechanicznych stopow TiNi oraz poliuretanu z pamiecia ksztaltu, Prace IPPT-IFTR Reports, Institute of Fundamental Technological Research of the Polish Academy of Sciences, 2008, (in Polish)Google Scholar
  23. 23.
    E.A. Pieczyska, H. Tobushi, and K. Kulasiński, Development of Transformation Bands in TiNi SMA for Various Stress and Strain Rates Studied by a Fast and Sensitive Infrared Camera, Smart Mater. Struct., 2013, 22, p 035007CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • Elzbieta Alicja Pieczyska
    • 1
  • Maria Staszczak
    • 1
  • Vladimir Dunić
    • 2
  • Radovan Slavković
    • 2
  • Hisaaki Tobushi
    • 3
  • Kohei Takeda
    • 3
  1. 1.Institute of Fundamental Technological ResearchWarsawPoland
  2. 2.Faculty of EngineeringUniversity of KragujevacKragujevacSerbia
  3. 3.Aichi Institute of TechnologyToyotaJapan

Personalised recommendations