Advertisement

Atomic Layer-Deposited Al2O3 Coatings on NiTi Alloy

  • C. C. Kei
  • Y. S. Yu
  • J. Racek
  • D. Vokoun
  • P. Šittner
Article

Abstract

Atomic layer deposition is introduced as a method suitable for preparation of Al2O3 layers on the surface of NiTi medical devices such as stents because of the excellent thickness control and conformal protective coating on complex structures. The corrosion properties of NiTi plates with Al2O3 coatings of various thicknesses in an environment similar to that occurring in the human body were studied using open circuit potential, potentiostatic electrochemical impedance spectroscopy, and cyclic polarization tests. It shows that the layer thickness plays a key role in the inhibition of corrosion. The thinner layers are more diffuse and make it easier for anodic reaction of passive NiTi with protective TiO2 underneath of Al2O3, while the thicker layers have the barrier effect with local pores initiating pitting corrosion. The results of our electrochemical experiments consistently show that corrosion properties of thick Al2O3 coatings on NiTi plate are inferior compared to the thin layers.

Keywords

ALD Al2O3 coating corrosion NiTi 

Notes

Acknowledgments

The authors from Institute of Physics of the ASCR acknowledge the support of SmartNets project of the 7th Framework and the support by the Grant Agency of the Czech Republic Under Contract No. 101/09/0702.

References

  1. 1.
    J.V. Humbeeck and R. Stalmans, Thermomechanical Properties of SMA, Shape Memory Materials, K. Otsuka, C.M. Wayman, Ed., Cambridge University Press, Cambridge, 1998Google Scholar
  2. 2.
    B. O’Brien and W. Carroll, The Evolution of Cardiovascular Stent Materials and Surfaces in Response to Clinical Drivers: A Review, Acta Biomater., 2009, 5, p 945–958CrossRefGoogle Scholar
  3. 3.
    T.J.W. Evans, M.L. Jones, and R.G. Newcombe, Clinical Comparison and Performance Perspective of Three Aligning Arch Wires, Am. J. Orthod. Dentofac. Orthop., 1998, 114, p 32–39CrossRefGoogle Scholar
  4. 4.
    F. Villermaux, M. Tabrizian, L. Yahia, G. Czeremuszkin, and D.L. Piron, Corrosion Resistance Improvement of NiTi Osteosynthesis Staples by Plasma Polymerized Tetrafluoroethylene Coating, BioMed. Mater. Eng., 1996, 6, p 241–254Google Scholar
  5. 5.
    S. Shabalovskaya, G. Rondelli, and M. Rettenmayr, Nitinol Surfaces for Implantation, J. Mater. Eng. Perform., 2009, 18, p 470–474CrossRefGoogle Scholar
  6. 6.
    G.C. McKay, R. Macnair, C. MacDonald, and M.H. Grant, Interactions of Orthopedic Metals with an Immortalized Rat Osteoblast Cell Line, Biomaterials, 1996, 17, p 1339–1344CrossRefGoogle Scholar
  7. 7.
    L. Zhu, J.M. Fino, A.R. Pelton, Oxidation of Nitinol, Proceedings of the international conference ob Shape Memory and Superelastic Technologies, 2004, p 357–366Google Scholar
  8. 8.
    J.L. Xu, F. Liu, F.P. Wang, and L.C. Zhao, Alumina Coating Formed on Medical NiTi Alloy by Micro-arc Oxidation, Mater. Lett., 2008, 62, p 4112–4114CrossRefGoogle Scholar
  9. 9.
    K. Ozeki, T. Yuhta, H. Aoki, and Y. Fukui, Inhibition of Ni Release from NiTi Alloy by Hydroxyapatite, Alumina, and Titanium Sputtered Coatings, BioMed. Mater. Eng., 2003, 13, p 271–279Google Scholar
  10. 10.
    K.Y. Chiu, M.H. Wong, F.T. Cheng, and H.C. Man, Characterization and Corrosion Studies of Titania-Coated NiTi Prepared by Sol-Gel Technique and Steam Crystallization, Appl. Surf. Sci., 2007, 253, p 6762–6768CrossRefGoogle Scholar
  11. 11.
    D. Starosvetsky and I. Gotman, TiN Coating Improves the Corrosion Behavior of Superelastic NiTi Surgical Alloy, Surf. Coat. Technol., 2001, 148, p 268–276CrossRefGoogle Scholar
  12. 12.
    M.F. Chen, X.J. Yang, Y. Liu, S.L. Zhu, Z.D. Cui, and H.C. Man, Study on the Formation of an Apatite Layer on NiTi Shape Memory Alloys Using a Chemical Treatment Method, Surf. Coat. Technol., 2003, 173, p 229–234CrossRefGoogle Scholar
  13. 13.
    M. Leskela and M. Ritala, Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges, Angew. Chem. Int. Ed., 2003, 42, p 5548–5554CrossRefGoogle Scholar
  14. 14.
    S.W. Choi, J.Y. Park, and S.S. Kim, Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties, Nanotechnology, 2009, 20, p 465603CrossRefGoogle Scholar
  15. 15.
    C.C. Wang, C.C. Kei, Y.W. Yu, and T.P. Perng, Organic Nanowire-Templated Fabrication of Alumina Nanotubes by Atomic Layer Deposition, Nano Lett., 2007, 7, p 1566–1569CrossRefGoogle Scholar
  16. 16.
    C. Liu, Q. Bi, A. Leyland, and A. Matthews, An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II. EIS Interpretation of Corrosion Behaviour, Corros. Sci., 2003, 45, p 1257–1273CrossRefGoogle Scholar
  17. 17.
    J.L. Xu, F. Liu, F.P. Wang, D.Z. Yu, and L.C. Zhao, The Corrosion Resistance Behavior of Al2O3 Coating Prepared on NiTi Alloy by Micro-arc Oxidation, J. Alloys Compd., 2009, 472, p 276–280CrossRefGoogle Scholar
  18. 18.
    U. Terranova and D.R. Bowler, Effect of Hydration of the TiO2 Anatase (1 0 1) Substrate on the Atomic Layer Deposition of Alumina Films, J. Mater. Chem., 2011, 21, p 4197–4203CrossRefGoogle Scholar
  19. 19.
    Technical report, Evaluation of Corrosion Risk of Tubes Made of Aluminized Carbon Steel Welded Longitudinally, SVÚOM Ltd, 2011Google Scholar
  20. 20.
    D.A. Jones, Principles and Prevention of Corrosion, Macmillan Publishing Company, New York, 1992Google Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • C. C. Kei
    • 1
  • Y. S. Yu
    • 1
  • J. Racek
    • 2
  • D. Vokoun
    • 2
  • P. Šittner
    • 2
  1. 1.Instrument Technology Research CenterHsinchuTaiwan
  2. 2.Department of Functional MaterialsInstitute of Physics of the ASCRPragueCzech Republic

Personalised recommendations