Journal of Materials Engineering and Performance

, Volume 23, Issue 4, pp 1204–1213 | Cite as

Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films

  • V. V. Ganbavle
  • G. L. Agawane
  • A. V. Moholkar
  • J. H. Kim
  • K. Y. Rajpure
Article

Abstract

Studies on effect of the substrate temperature on physicochemical properties of WO3 thin films prepared using spray pyrolysis technique have been presented. Raman spectra of the film shows presence of W-O-W network with stretching and bending vibrations which revealed monoclinic structure of WO3 which is confirmed by XRD studies. XPS studies show that films are sub-stoichiometric and O/W ratio is 2.87, with W present in two valence states W+5 and W+6 with ratio of 0.21. Smallest crystallite size (28 nm) is observed for the film deposited at 425 °C, and on either side crystallite size is larger. Optical studies show band gap energy 2.6 eV and NUV, blue and green photo-emissions from WO3 films. Scanning electron micrographs depict wired network of the WO3, and AFM shows rough nature of the films. The thermo-emf is found to be linearly changing with temperature difference and decreases with increase in the substrate temperature.

Keywords

Dielectric properties optical properties photoelectron spectroscopy Raman spectroscopy thin films 

Notes

Acknowledgment

This work is supported by UGC through financial support by major research project entitled “Photocatalytic degradation of waste water using sprayed tungsten trioxide (WO3) thin films”. No. 41-869/2012. One of the authors (V. V. Ganbavle) is thankful to UGC New Delhi, for awarding fellowship through UGC-BSR scheme.

References

  1. 1.
    M. Deepa, D.P. Singh, S.M. Shivaprasad, and S.A. Agnihotry, A Comparison of Electrochromic Properties of Sol-Gel Derived Amorphous and Nanocrystalline Tungsten Oxide Films, Curr. Appl. Phys., 2007, 7, p 220–229CrossRefGoogle Scholar
  2. 2.
    J.M. O-Rueda de Leon, D.R. Acosta, U. Pal, and L. Castaneda, Improving Electrochromic Behavior of Spray Pyrolised WO3 Thin Solid Films by Mo Doping, Electrochim. Acta, 2011, 56, p 2599–2605CrossRefGoogle Scholar
  3. 3.
    S.K. Deb, Opportunities and Challenges in Science and Technology of WO3 for Electrochromic and Related Applications, Sol. Energy Mater. Sol. Cells, 2008, 92, p 245–258CrossRefGoogle Scholar
  4. 4.
    A. Kaushal, N. Choudhary, N. Kaur, and D. Kaur, VO2-WO3 Nanocomposite Thin Films Ynthesized by Pulsed Laser Deposition Technique, App. Surf. Sci., 2011, 257, p 8937–8944CrossRefGoogle Scholar
  5. 5.
    C.W. Lai, and S. Sreekantan, Preparation of Hybrid WO3-TiO2 Nanotube Photoelectrodes Using Anodization and Wet Impregnation: Improved Water-Splitting Hydrogen Generation Performance, Int. J. Hydrogen Energy, 2013, 38, 2156–2166Google Scholar
  6. 6.
    D.S. Lee, K.H. Nam, and D.D. Lee, Effect of Substrate on NO2 Sensing Properties of WO3 Thin Film Gas Sensors, Thin Solid Films, 2000, 375, p 142–146CrossRefGoogle Scholar
  7. 7.
    M.N. Spallart and S.B. Sadale, Photoelectrocatalysis with Drop-Cast Tungsten Trioxide Films, J. New Mater. Electrochem. Syst., 2010, 13, p 127–131Google Scholar
  8. 8.
    G. Wang, Y. Ji, R. Huang, Q. Yang, P. Gouma, and M. Dudley, Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing, J. Phys. Chem. B 110 (2006), p 23777–23782Google Scholar
  9. 9.
    G. Shaw, I.P. Parkin, K.F.E. Pratt, and D.E. Williams, Control of Semiconducting Oxide Gas-Sensor Microstructure by Application of an Electric Field During AEROSOL-ASSISTED CHEMICAL VAPOUR DEPOSITION, J. Mater. Chem., 2005, 15, p 149–154CrossRefGoogle Scholar
  10. 10.
    M. Akiyama, J. Tamaki, N. Miura, and N. Yamazoe, Tungsten Oxide-Based Semiconductor Sensor Highly Sensitive to NO and NO2, Chem. Lett., 1991, 20, p 1611–1614CrossRefGoogle Scholar
  11. 11.
    J. Shieh, H.M. Feng, M.H. Hon, and H.Y. Juang, WO3 and W-Ti-O Thin-Film Gas Sensor Prepared by Sol-Gel Dip-Coasting, Sensors Actuators B, 2002, 86, p 75–80CrossRefGoogle Scholar
  12. 12.
    A.A. Tomchenko, G.P. Harmer, B.T. Marquis, and J.W. Allen, Semiconducting Metal Oxide Sensor Array for the Selective Detection of Combustion Gases, Sensors Actuators B, 2003, 93, p 126–134CrossRefGoogle Scholar
  13. 13.
    C.S. Blackman and I.P. Parkin, Atmospheric Pressure Chemical Vapor Deposition of Crystalline Monoclinic WO3 and WO3-x Thin Films from Reaction of WCl6 with O-Containing Solvents and Their Photochromic and Electrochromic Properties, Chem. Mater., 2005, 17, p 1583–1590CrossRefGoogle Scholar
  14. 14.
    W.J. Lee, P.S. Shinde, G.H. Go, and C.H. Doh, Enhanced Photoelectrochemical Performance of WO3/Ti Photoanode Due to In Situ Formation of a Thin Interfacial Composite Layer, Appl. Surf. Sci., 2013, 270, p 267–271CrossRefGoogle Scholar
  15. 15.
    M.H. Yaacob, M.Z. Ahmad, A.Z. Sadek, J.Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, Optical Response of WO3 Nanostructured Thin Films Sputtered on Different Transparent Substrates Towards Hydrogen of Low Concentration, Sensors Actuators B, 2013, 177, p 981–988CrossRefGoogle Scholar
  16. 16.
    I.M. Szilagyi, L. Wang, P.I. Gouma, C. Balazsi, J. Madarasz, and G. Pokol, Preparation of Hexagonal WO3 from Hexagonal Ammonium Tungsten Bronze for Sensing NH3, Mater. Res. Bull., 2009, 44, p 505–508CrossRefGoogle Scholar
  17. 17.
    O. Pyper, R. Schollhorn, J.T.M. Donkers, and L.H.M. Krings, Nanocrystalline Structure of WO3 Thin Films Prepared by the Sol-Gel Technique, Mater. Res. Bull., 1998, 33, p 1095–1101CrossRefGoogle Scholar
  18. 18.
    X. Su, Y. Li, J. Jian, and J. Wang, In Situ Etching WO3 Nanoplates: Hydrothermal Synthesis, Photoluminescence and Gas Sensor Properties, Mater. Res. Bull., 2010, 45, p 1960–1963CrossRefGoogle Scholar
  19. 19.
    D.S. Martinez, A.M. Cruz, and E. Lopez-Cuellar, Synthesis of WO3 Nanoparticles by Citric Acid-Assisted Precipitation and Evaluation of Their Photocatalytic Properties, Mater. Res. Bull., 2013, 48, p 691–697CrossRefGoogle Scholar
  20. 20.
    C.N.J. Wagner, Local Arrangement for X-ray Diffraction, chap 7, Gordon and Breach, New York, 1966Google Scholar
  21. 21.
    S. Thanikaikarasan, T. Mahalingam, A. Kathalingam, Y.D. Kim, and T. Kim, Growth and Characterization of Electrosynthesized Iron Selenide Thin Films, Vacuum, 2009, 83, p 1066–1072CrossRefGoogle Scholar
  22. 22.
    P. Biloen and G.T. Pott, X-ray Photoelectron Spectroscopy Study of Supported Tungsten Oxide, J. Catal., 1973, 30, p 169–174CrossRefGoogle Scholar
  23. 23.
    A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, and K.Y. Rajpure, Sensing Properties of Sprayed Antimony Doped Tin Oxide Thin Films: Solution Molarity, J. Alloys Compd., 2011, 509, p 3108–3115CrossRefGoogle Scholar
  24. 24.
    J. Gabrusenoks, A. Veispals, A. Czarnowski, and K.H. Meiwes-Broer, Infrared and Raman spectroscopy of WO3 and CdWO4, J. Electrochim. Acta, 2001, 46, p 2229–2231CrossRefGoogle Scholar
  25. 25.
    C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications, J. Am. Chem. Soc., 2001, 123, p 10639–10649CrossRefGoogle Scholar
  26. 26.
    E. Salje, The Orthorhombic Phase of WO3, Acta. Crystallogr., 1977, B33, p 574–577CrossRefGoogle Scholar
  27. 27.
    M. Daniel, B. Desbat, J. Lassegues, B. Gerand, and M. Figlarz, Infrared and Raman Study of W03 Tungsten Trioxides and WO3, xHzO Tungsten Trioxide Hydrates, J. Solid State Chem., 1987, 67, p 235–247CrossRefGoogle Scholar
  28. 28.
    J.L. Solis, J. Rodriguez, and W. Estrada, Highly Porous Tungsten-Oxide-Based Films Obtained by Spray-Gel for Gas Sensing Applications, Revista Mexicana Defisica, 2006, 52, p 29–31Google Scholar
  29. 29.
    K.Y. Rajpure, C.D. Lokhande, and C.H. Bhosale, A Comparative Study of the Properties of Spray-Deposited Sb2Se3 Thin Films Prepared from Aqueous and Nonaqueous Media, Mater. Res. Bull., 1999, 34, p 1079–1087CrossRefGoogle Scholar
  30. 30.
    H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Bristol, 1995, p 244Google Scholar
  31. 31.
    M.A. Damian, Y. Rodriguez, J.L. Solis, and W. Estrada, Characterization and Butanolyethanol Sensing Properties of Mixed Tungsten Oxide and Copper Tungstate films Obtained by Spray-Sol-Gel, Thin Solid Films, 2003, 444, p 104–110CrossRefGoogle Scholar
  32. 32.
    M. Manfredi, C. Paracchini, G.C. Salviati, and G. Schianchi, Conductive Processes in Transparent WO3 Films Irradiated with Ultraviolet Light, Thin Solid Films, 1981, 79, p 161–166CrossRefGoogle Scholar
  33. 33.
    J.Y. Luo, F.L. Zhao, L. Gong, H.J. Chen, and J. Zhou, Ultraviolet-Visible Emission from Three-Dimensional WO3-x Nanowire Networks, Appl. Phys. Lett., 2007, 91, p 093124CrossRefGoogle Scholar
  34. 34.
    J. Diaz-Reyes, J.E. Lores-Mena, J.M. Gutierrez-Arias, M.M. Morincastillo, H. Azucena-Courtecatl, M. Galvan, P. Rodriguwz-Fragoso, and A. Mendez-Lopez, Optical and Structural Properties of WO3 as a Function of the Annealing Temperature, Advances in Sensors, Signals and Materials, p 99–104, ISBN: 978-960-474-248-6Google Scholar
  35. 35.
    V.S. Sawant, S.S. Shinde, R.J. Deokate, C.H. Bhosale, B.K. Chougule, and K.Y. Rajpure, Effect of Calcining Temperature on Electrical and Dielectric Properties of Cadmium Stannate, Appl. Surf. Sci., 2009, 255, p 6675–6678CrossRefGoogle Scholar
  36. 36.
    R.C. Kambale, N.R. Adhate, B.K. Chougule, and Y.D. Kolekar, Magnetic and dielectric properties of mixed spinel Ni-Zn ferrites synthesized by citrate-nitrate combustion method, J. Alloys Compd., 2010, 491, p 372–377CrossRefGoogle Scholar

Copyright information

© ASM International 2014

Authors and Affiliations

  • V. V. Ganbavle
    • 1
  • G. L. Agawane
    • 2
  • A. V. Moholkar
    • 1
  • J. H. Kim
    • 2
  • K. Y. Rajpure
    • 1
  1. 1.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations