Journal of Materials Engineering and Performance

, Volume 22, Issue 12, pp 3723–3727 | Cite as

Microstructure and Properties of a Deformation-Processed Cu-Cr-Ag In Situ Composite by Directional Solidification

  • Keming LiuEmail author
  • Deping Lu
  • Haitao Zhou
  • Yanling Yang
  • Andrej Atrens
  • Jin Zou


Cu-7Cr-0.07Ag alloys were prepared by casting and directional solidification, from which deformation-processed in situ composites were prepared by thermo-mechanical processing. The microstructure, mechanical properties, and electrical properties were investigated using optical microscopy, scanning electronic microscopy, tensile testing, and a micro-ohmmeter. The second-phase Cr grains of the directional solidification Cu-7Cr-0.07Ag in situ composite were parallel to the drawing direction and were finer, which led to a higher tensile strength and a better combination of properties.


Cu-Cr-Ag directional solidification in situ composite microstructure property 



This project was financially supported by the National Natural Science Foundation of China (No. 50961006), the Key Program of Natural Science Foundation of Jiangxi Province (No. 20133BAB20008), the Open Foundation of Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials (No. 2011-TW-02, 2010-WT-01), and the Natural Science Foundation of Jiangxi Academy of Sciences (No. 2012-YQC-09).


  1. 1.
    J.B. Liu, L. Zhang, and L. Meng, Effects of Rare-Earth Additions on the Microstructure and Strength of Cu-Ag Composites, Mater. Sci. Eng. A, 2008, 498, p 392–396CrossRefGoogle Scholar
  2. 2.
    D. Raabe, S. Ohsaki, and K. Hono, Mechanical Alloying and Amorphization in Cu-Nb-Ag In Situ Composite Wires Studied by Transmission Electron Microscopy and Atom Probe Tomography, Acta. Mater., 2009, 57, p 5254–5263CrossRefGoogle Scholar
  3. 3.
    Z.X. Xie, H.Y. Gao, Q. Lu, J. Wang, and B.D. Sun, Effect of Ag Addition on the As-Cast Microstructure of Cu-8 wt.% Fe In Situ Composites, J. Alloys Compd., 2010, 508, p 320–323CrossRefGoogle Scholar
  4. 4.
    K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, J. Zou, Y.L. Yang, and S.M. Zeng, Effect of Ag Micro-Alloying on the Microstructure and Properties of Cu-14Fe In-Situ Composite, Mater. Sci. Eng. A, 2010, 527, p 4953–4958CrossRefGoogle Scholar
  5. 5.
    X. Sauvage, P. Jessner, F. Vurpillot, and R. Pippan, Nanostructure and Properties of a Cu-Cr Composite Processed by Severe Plastic Deformation, Scripta Mater., 2008, 58, p 1125–1128CrossRefGoogle Scholar
  6. 6.
    Y. Jin, K. Adachi, T. Takeuchi, and H.G. Suzuki, Ageing Characteristics of Cu-Cr In-Situ Composite, J. Mater. Sci., 1998, 33, p 1333–1341CrossRefGoogle Scholar
  7. 7.
    L. Zhang, L. Meng, and J.B. Liu, Effects of Cr Addition on the Microstructural, Mechanical and Electrical Characteristics of Cu-6 wt.%Ag Microcomposite, Scripta Mater., 2005, 52, p 587–592CrossRefGoogle Scholar
  8. 8.
    H. Fu, Z. Zhang, Y. Jiang, and J. Xie, Improvement of Magnetic Properties of an Fe-6.5 wt.% Si Alloy by Directional Solidification, Mater. Lett., 2011, 65, p 1416–1419CrossRefGoogle Scholar
  9. 9.
    X.F. Ding, J.P. Lin, H. Qi, L.Q. Zhang, X.P. Song, and G.L. Chen, Microstructure Evolution of Directionally Solidified Ti-45Al-8.5Nb-(W, B, Y) Alloys, J. Alloys Compd., 2011, 509, p 4041–4046CrossRefGoogle Scholar
  10. 10.
    L.S. Luo, Y.Q. Su, J.J. Guo, X.Z. Li, S.M. Li, H. Zhong, L. Liu, and H.Z. Fu, Peritectic Reaction and its Influences on the Microstructures Evolution During Directional Solidification of Fe-Ni Alloys, J. Alloys Compd., 2008, 461, p 121–127CrossRefGoogle Scholar
  11. 11.
    L. Liu, T. Huang, M. Qu, G. Liu, J. Zhang, and H. Fu, High Thermal Gradient Directional Solidification and Its Application in the Processing of Nickel-Based Superalloys, J. Mater. Process. Technol., 2010, 210, p 159–165CrossRefGoogle Scholar
  12. 12.
    K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, Z.B. Chen, J. Zou, and S.M. Zeng, Influence of Ag Micro-Alloying on the Microstructure and Properties of Cu-7Cr In Situ Composite, J. Alloys Compd., 2010, 500, p L22–L25CrossRefGoogle Scholar
  13. 13.
    J.Q. Deng, X.Q. Zhang, S.Z. Shang, F. Liu, Z.X. Zhao, and Y.F. Ye, Effect of Zr Addition on the Microstructure and Properties of Cu-10Cr In Situ Composites, Mater. Design, 2009, 30, p 4444–4449CrossRefGoogle Scholar
  14. 14.
    Y. Liu, S. Shao, K.M. Liu, X.J. Yang, and D.P. Lu, Microstructure Refinement Mechanism of Cu-7Cr In Situ Composites with Trace Ag, Mater. Sci. Eng. A, 2012, 531, p 141–146CrossRefGoogle Scholar
  15. 15.
    H.Y. Gao, J. Wang, D. Shu, and B.D. Sun, Effect of Ag on the Microstructure and Properties of Cu-Fe In Situ Composites, Scripta Mater., 2005, 53, p 1105–1109CrossRefGoogle Scholar
  16. 16.
    H.Y. Gao, J. Wang, D. Shu, and B.D. Sun, Effect of Ag on the Aging Characteristics of Cu-Fe In Situ Composites, Scripta Mater., 2006, 54, p 1931–1935CrossRefGoogle Scholar
  17. 17.
    Z.W. Wu, J.J. Liu, Y. Chen, and L. Meng, Microstructure, Mechanical Properties and Electrical Conductivity of Cu-12 wt.% Fe Microcomposite Annealed at Different Temperatures, J. Alloys Compd., 2009, 467, p 213–218CrossRefGoogle Scholar
  18. 18.
    J.P. Ge, H. Zhao, Z.Q. Yao, and S.H. Liu, Microstructure and Properties of Deformation-Processed Cu-Fe In-Situ Composites, Trans. Nonferrous Met. Soc. China, 2005, 15, p 971–977Google Scholar
  19. 19.
    H.Y. Gao, J. Wang, D. Shu, and B.D. Sun, Microstructure and Properties of Cu-11Fe-6Ag In Situ Composite After Thermo-Mechanical Treatments, J. Alloys Compd., 2007, 438, p 268–273CrossRefGoogle Scholar
  20. 20.
    S.I. Hong and M.A. Hill, Microstructure and Conductivity of Cu-Nb Microcomposites Fabricated by the Bundling and Drawing Process, Scripta Mater., 2001, 44, p 2509–2515CrossRefGoogle Scholar
  21. 21.
    F. Heringhaus, D. Raabe, and G. Gottstein, On the Correlation of Microstructure and Electromagnetic Properties of Heavily Cold Worked Cu-20% Nb Wires, Acta Metall. Mater., 1995, 43, p 1467–1476CrossRefGoogle Scholar
  22. 22.
    D. Raabe, K. Miyake, and H. Takahara, Processing, Microstructure, and Properties of Ternary High-Strength Cu-Cr-Ag In Situ Composites, Mater. Sci. Eng. A, 2000, 291, p 186–197CrossRefGoogle Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • Keming Liu
    • 1
    Email author
  • Deping Lu
    • 1
  • Haitao Zhou
    • 2
  • Yanling Yang
    • 1
  • Andrej Atrens
    • 3
  • Jin Zou
    • 1
  1. 1.Jiangxi Key Laboratory for Advanced Copper and Tungsten MaterialsJiangxi Academy of SciencesNanchangPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  3. 3.The University of QueenslandBrisbaneAustralia

Personalised recommendations