Journal of Materials Engineering and Performance

, Volume 22, Issue 12, pp 3872–3883 | Cite as

Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting

  • H. K. Rafi
  • N. V. Karthik
  • Haijun Gong
  • Thomas L. Starr
  • Brent E. Stucker


This work compares two metal additive manufacturing processes, selective laser melting (SLM) and electron beam melting (EBM), based on microstructural and mechanical property evaluation of Ti6Al4V parts produced by these two processes. Tensile and fatigue bars conforming to ASTM standards were fabricated using Ti6Al4V ELI grade material. Microstructural evolution was studied using optical and scanning electron microscopy. Tensile and fatigue tests were carried out to understand mechanical properties and to correlate them with the corresponding microstructure. The results show differences in microstructural evolution between SLM and EBM processed Ti6Al4V and their influence on mechanical properties. The microstructure of SLM processed parts were composed of an α′ martensitic phase, whereas the EBM processed parts contain primarily α and a small amount of β phase. Consequently, there are differences in tensile and fatigue properties between SLM- and EBM-produced Ti6Al4V parts. The differences are related to the cooling rates experienced as a consequence of the processing conditions associated with SLM and EBM processes.


EBM fatigue testing microstructure SLM tensile testing 



The authors acknowledge the Office of Naval Research (ONR), USA for support through grant #’s N00014-09-1-0147, N00014‐10‐1‐0800, and N00014-11-1-0689.


  1. 1.
    F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The Manufacturing of Hard Tools from Metallic Powders by Selective Laser Melting, J. Mater. Process. Technol., 2001, 111, p 210–213CrossRefGoogle Scholar
  2. 2.
    S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, and R.B. Wicker, Comparison of Microstructures and Mechanical Properties for Solid and Mesh Cobalt-Base Alloy Prototypes Fabricated by Electron Beam Melting, Metall. Mater. Trans. A, 2010, 41A, p 3216–3227CrossRefGoogle Scholar
  3. 3.
    E. Brinksmeier, G. Levy, D. Meyer, and A.B. Spierings, Surface Integrity of Selective-Laser-Melted Components, CIRP Ann. Manuf. Technol., 2010, 59(1), p 601–606CrossRefGoogle Scholar
  4. 4.
    J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs, Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing, CIRP Ann. Manuf. Technol., 2007, 56, p 730–759CrossRefGoogle Scholar
  5. 5.
    M.F. Zah and S. Lutzmann, Modelling and Simulation of Electron Beam Melting, Prod. Eng. Res. Dev., 2010, 4, p 15–23CrossRefGoogle Scholar
  6. 6.
    L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V, Mater. Charact., 2009, 60, p 96–109CrossRefGoogle Scholar
  7. 7.
    L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58, p 3303–3312CrossRefGoogle Scholar
  8. 8.
    B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V, Mater. Des., 2012, 35, p 120–125CrossRefGoogle Scholar
  9. 9.
    I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8069CrossRefGoogle Scholar
  10. 10.
    R. Morgan, C.J. Sutcliffe, and W. O’Neill, Density Analysis of Direct Metal Laser Remelted 316L Stainless Steel Cubic Primitives, J. Mater. Sci., 2004, 39(4), p 1195–1205CrossRefGoogle Scholar
  11. 11.
    E. Yasa, J. Deckers, and J.P. Kruth, The Investigation of the Influence of Laser Re-Melting on Density, Surface Quality and Microstructure of Selective Laser Melting Parts, Rapid Prototyp. J., 2011, 17(5), p 312–327CrossRefGoogle Scholar
  12. 12.
    S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V, Metall. Mater. Trans. A., 2010, 41A, p 3422–3432CrossRefGoogle Scholar
  13. 13.
    L. Facchini, E. Magalini, P. Robotti, and A. Molinari, Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-Alloyed Powders, Rapid Prototyp. J., 2009, 15(3), p 171–178CrossRefGoogle Scholar
  14. 14.
    B. Vrancken, L. Thijis, J.P. Kruth, and J.V. Humbeeck, Heat Treatment of Ti6Al4V Produced by Selective Laser Melting—Microstructure and Mechanical Properties, J. Alloy Compd., 2012, 541, p 177–185CrossRefGoogle Scholar
  15. 15.
    ASM Handbook, Vol. 1, ASM International, Materials Park, OH, 1993, p 2071Google Scholar
  16. 16.
    T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A., 2011, 42, p 3190CrossRefGoogle Scholar
  17. 17.
    L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hogess, and K. Wissenbach, Ductility of Ti-6Al-4V Alloy Produced by Selective Laser Melting of Pre-Alloyed Powders, Rapid Prototyp. J., 2010, 16(6), p 450–459CrossRefGoogle Scholar
  18. 18.
    G. Chahine, M. Koike, T. Okabe, P. Smith, and R. Kovacevic, The Design and Production of Ti-6Al-4V ELI, Customized Dental Implants, JOM, 2008, 60(11), p 50–55CrossRefGoogle Scholar
  19. 19.
    G.E. Dieter, Mechanical Metallurgy, McGraw Hill, New York, 1986Google Scholar
  20. 20.
    M. Erdogan and S. Tekeli, The Effect of Martensitic Particle Size on Tensile Fracture of Surface-Carburized AISI, 8620 Steel with Dual Phase Core Microstructure, Mater. Des., 2002, 23, p 597–604CrossRefGoogle Scholar
  21. 21.
    T.S. Srivatsana, M. Kuruvilla, and L. Park, A Study at Understanding the Mechanisms Governing the High Cycle Fatigue and Final Fracture Behavior of the Titanium Alloy: Ti-4Al-2.5V, Mater. Sci. Eng. A., 2010, 527, p 435–448CrossRefGoogle Scholar
  22. 22.
    S.G. Ivanova, R.R. Biederman, and R.D. Sisson, Jr., Investigation of Fatigue Crack Initiation in Ti-6Al-4V During Tensile-Tensile Fatigue, J. Mater. Eng. Perform., 2002, 11(2), p 226–231CrossRefGoogle Scholar
  23. 23.
    R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, and R.O. Ritchie, Influence of Microstructure on High-Cycle Fatigue of Ti-6Al-4V: Bimodal vs. Lamellar Structures, Metall. Mater. Trans. A., 2002, 33A, p 899–918Google Scholar
  24. 24.
    J. Oh, N.J. Kim, S. Lee, and W. Lee, Correlation of Fatigue Properties and Microstructure in Investment Cast Ti-6Al-4V, Mater. Sci. Eng. A., 2003, 340, p 232–242CrossRefGoogle Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • H. K. Rafi
    • 1
  • N. V. Karthik
    • 1
  • Haijun Gong
    • 1
  • Thomas L. Starr
    • 1
  • Brent E. Stucker
    • 1
  1. 1.Department of Industrial Engineering, JB Speed School of EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations