Journal of Materials Engineering and Performance

, Volume 22, Issue 11, pp 3237–3257 | Cite as

Effect of Chemical Composition on Texture Using Response Surface Methodology

  • K. Velmanirajan
  • R. Narayanasamy
  • K. Anuradha


This study explores the effect of annealing temperature and chemical composition on crystallographic texture evolution of commercially pure aluminium alloy sheets using response surface methodology (RSM). The orientation of the crystal structure in Euler space using Bunge notation has been studied to know the behavior of the metal and estimate its volume fraction. The experimental procedure involves texture analysis with respect to annealing temperature and chemical composition in correlation with the results of formability and use of RSM. The effect of important input parameters, namely, annealing temperature and chemical composition (impurities) was used for predicting the numerical models using the volume fraction of texture output from the crystallographic study using Design Expert, trial software. Also this study explains the effect of individual chemical components, namely, iron, silicon, and copper in evolution of texture components. The volume fraction of Cube {1 0 0} 〈0 0 1〉, Bs {1 1 0} 〈1 1 2〉, and S {1 2 3} 〈6 3 4〉 components increase, whenever iron and copper content increase and silicon component decreases.


aluminium alloys recrystallization x-ray diffraction 



First input variable (annealing temperature in K)


Absolute average deviation

Amax, Amin

Maximum and minimum coded factor


Analysis of variance

a, b, c

Notation for variables in coded form

ac, bc

Scattering widths


Second input variable (chemical composition in wt.%, impurities in wt.%)


Degree of freedom


Diameter of gird in mm (before deformation)


Major diameter of gird circle after deformation in mm


Minor diameter of gird circle after deformation in mm


Angular elemental orientation


Partial volume of all crystallites


Volume of all crystals


Fiber axis

gc (or) g

Preferred orientation

GM (y)

Geometric mean of observations y i ,…y n


The number of experimental runs


Crystal direction


Volume fraction

K value (or) K

Strength coefficient value

n value

Strain hardening index or exponent value


Normal direction


Orientation distribution function


Plane Strain condition

p value and F value

Results of ANOVA table


Correlation coefficient power two


Rolling direction

r value

Plastic strain ratio (ratio of width to thickness strain)




Tension compression strain condition


Tension tension strain condition

t0 (or) Th

Thickness of sheet in mm (before deformation)


Thickness of sheet after deformation in mm


Sample volume


Sample vector

Yi,exp and Yi,pred

Experimental and predicted responses


Observed response


Fitted value of ith unit


True strain


True major strain


True minor strain


True thickness strain


Debye angle along ring


Power parameter


Standard deviation


True stress

ϕ1, φ (or) θ, ϕ2 (or) ψ

Euler angles by Bunge notation


Axis rotation for better pole coverage



The authors would like to thank Mr. R. Madhavan, Department of Materials Engineering, Indian Institute of Science, Bangalore-560 012, India and Dr. Indradev Samajdar, IITB Mumbai for their encouragement and also the support rendered by National Facility of Texture and OIM, IITB Mumbai (Supported by DST (IRPHA)).


  1. 1.
    G. Venkateswarlu, M.J. Davidson, and G.R.N. Tagore, Influence of Process Parameters on the Cup Drawing of Aluminium 7075 Sheet, Int. J. Eng. Sci. Technol., 2010, 2(11), p 41–49Google Scholar
  2. 2.
    M. AghaeiKhafri and R. Mahmoudi, Predicting of Plastic Instability and Forming Limit Diagrams, Int. J. Mech. Sci., 2004, 46(9), p 1289–1306CrossRefGoogle Scholar
  3. 3.
    S.K. Mishra, S.G. Desai, P. Pant, K. Narasimhan, and I. Samajdar, Improved Predictability of Forming Limit Curves Through Microstructural Inputs, Int. J Mater Form., 2009, 2, p 59–67CrossRefGoogle Scholar
  4. 4.
    R. Narayanasamy, M. Ravichandran, and N.L. Parthasarathi, Effect of Annealing on Formability of Aluminium Grade 19000, Mater. Des., 2008, 29, p 1633–1653CrossRefGoogle Scholar
  5. 5.
    M.Y. Huh and O. Engler, Effect of Intermediate Annealing on Texture, Formability and Ridging of 17% Cr Ferritic Stainless Steel Sheet, Mater. Sci. Eng. A, 2001, 308, p 74–87CrossRefGoogle Scholar
  6. 6.
    G. Li, X. Zhang, P. Li, and J. You, Effects of Retrogression Heating Rate on Microstructures and Mechanical Properties of Aluminum Alloy 7050, Trans. Nonferrous Met. Soc. China, 2010, 20, p 935–941CrossRefGoogle Scholar
  7. 7.
    D.D. Hall and I. Mudawar, Optimization of Quench History of Aluminium Parts for Superior Mechanical Properties, Int. J. Heat Mass Transf., 1996, 39, p 81–95CrossRefGoogle Scholar
  8. 8.
    J.-T. Gau, C. Principe, and J. Wang, An Experimental Study on Size Effects on Flow Stress and Formability of Aluminium and Brass for Micro Forming, J. Mater. Process. Technol., 2007, 184, p 42–46CrossRefGoogle Scholar
  9. 9.
    S. Reeh, D. Music, T. Gebhardt, M. Kasprzak, T. Jäpel, S. Zaefferer, D. Raabe, S. Richter, A. Schwedt, J. Mayer, B. Wietbrock, G. Hirt, and J.M. Schneider, Elastic Properties of Face-Centred Cubic Fe-Mn-C Studied by Nanoindentation and Ab Initio Calculations, Acta Metall., 1966, 14(3), p 405–423CrossRefGoogle Scholar
  10. 10.
    C.E. Caicedo-Martinez, E.V. Koroleva, G.E. Thompson, P. Skeldon, K. Shimizu, G. Hoellrigl, C. Campbell, and E. McAlpine, Influence of Impurities in Aluminium on Surface Treatment, Corros. Sci., 2002, 44(11), p 2611–2620CrossRefGoogle Scholar
  11. 11.
    S. Taguchi and A. Sakakura, The Effects of AlN on Secondary Recrystallization Textures in Cold Rolled and Annealed (001) [100] Single Crystals of 3% Silicon Iron, Mater. Sci. Eng. A, 1996, 208(2), p 172–180CrossRefGoogle Scholar
  12. 12.
    A.K. Vasudévan, M.A. Przystupa, and W.G. Fricke, Jr., Effect of Composition on Crystallographic Texture in Hot-Rolled Al-Li-Cu Alloys, Int. J. Mech. Sci., 2006, 48(2), p 198–209CrossRefGoogle Scholar
  13. 13.
    Z.B. Sajuri, Y. Miyashita, Y. Hosokai, and Y. Mutoh, Effects of Mn Content and Texture on Fatigue Properties of As-Cast and Extruded AZ61 Magnesium Alloys, Corros. Sci., 2002, 48(2), p 198–209Google Scholar
  14. 14.
    R. Narayanasamy, M. Ravichandran, C.S. Narayanan, N.L. Parthasarathi, and R. Ravindran, Effect of Annealing Temperature on Void Coalescence in 5086 Aluminium Alloy Formed Under Different Stress Conditions, Mater. Des., 2006, 3, p 293–307Google Scholar
  15. 15.
    P.D. Wu, S.R. MacEwen, D.J. Lloyd, and K.W. Neale, Effect of Cube Texture on Sheet Metal Formability, Mater. Sci. Eng. A, 2004, 364, p 182–187CrossRefGoogle Scholar
  16. 16.
    Ph. Lequeu, P. Gilormini, F. Montheillet, B. Bacroix, and J.J. Jonas, Yield Surfaces for Textured Polycrystals-I. Crystallographic Approach, Acta Metall., 1987, 35, p 439CrossRefGoogle Scholar
  17. 17.
    J.-H. Ryu and D.N. Lee, The Effect of Precipitation on the Evolution of Recrystallization Texture in AA8011 Aluminum Alloy Sheet, Mater. Sci. Eng. A, 2002, 336, p 225–232CrossRefGoogle Scholar
  18. 18.
    Ph. Gerber, J. Tarasiuk, Th. Chauveau, and B. Bacroix, A Quantitative Analysis of the Evolution of Texture and Stored Energy During Annealing of Cold Rolled Copper, Acta Mater., 2003, 51, p 6359–6371CrossRefGoogle Scholar
  19. 19.
    R. Galand, K. Haxaire, L. Arnaud, E. Petitprez, L. Clement, P. Waltz, and Y. Wouters, Microstructure and Texture Analysis of Narrow Copper Line Versus Widths and Annealing for Reliability Improvement, Microelectron. Eng., 2011, 88, p 661–665CrossRefGoogle Scholar
  20. 20.
    S. Matthies, H.R. Wenk, and G.W. Vinel, Some Basic Concepts of Texture Analysis and Comparison of Three Methods to Calculate Orientation Distributions from Pole Figures, J. Appl. Cryst., 1988, 21, p 285–304CrossRefGoogle Scholar
  21. 21.
    O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, 2nd ed., CRC Press, Boca Raton, 2009CrossRefGoogle Scholar
  22. 22.
    U.F. Kocks, C.N. Tomé, H.-R. Wenk, and H. Mecking, Texture and Anisotropy: Preferred Orientations in Polycrystals and their effects on Materials Properties, Cambridge University Press, Cambridge, 2000Google Scholar
  23. 23.
    D.B. Knorr, J.M. Peltier, and R.M. Pelloux, Zirconium in the Nuclear Industry: Sixth International Symposium, ASTM, Philadelphia, 1972, p 627–651Google Scholar
  24. 24.
    P. Rudling, A. Strasser, and F. Garzarolli, Welding of Zirconium Alloys, Advanced Nuclear Technology International, Sweden, 2007, p 4–13Google Scholar
  25. 25.
    T.A. Bennett, R.H. Petrov, and L.A.I. Kestens, Texture-Induced Surface Roping in an Automotive Aluminium Sheet, Scr. Mater., 2009, 61(7), p 733–736CrossRefGoogle Scholar
  26. 26.
    B. Poorganji, P. Sepehrband, H. Jin, and S. Esmaeili, Effect of Cold Work and Non-Isothermal Annealing on the Recrystallization Behaviour and Texture Evolution of a Precipitation-Hardanable Aluminium Alloy, Scr. Mater., 2010, 63, p 1157–1160CrossRefGoogle Scholar
  27. 27.
    A. Mkaddem and D. Saidane, Experimental Approach and RSM Procedure on the Examination of Springback in Wiping-Die Bending Process, J. Mater. Process. Technol., 2007, 189(1-3), p 325–333CrossRefGoogle Scholar
  28. 28.
    X. Wang, X. Song, M. Jiang, P. Li, Y. Hu, K. Wang, and H. Liu, Modeling and Optimization of Laser Transmission Joining Process Between PET and 316L Stainless Steel Using Response Surface Methodology, Opt. Laser Technol., 2012, 44(3), p 656–663CrossRefGoogle Scholar
  29. 29.
    A. Ramazani, M. Abbasi, U. Prahl, and W. Bleck, Modelling the Effect of Microstructural Banding on the Flow Curve Behaviour of Dual-Phase (DP) Steels, Comput. Mater. Sci., 2012, 16, p 41–46Google Scholar
  30. 30.
    M. Crumbach, M. Goerdeler, and G. Gottstein, Modelling of Recrystallisation Textures in Aluminium Alloys II. Model Performance and Experimental Validation, Acta Mater., 2006, 54, p 3291–3306CrossRefGoogle Scholar
  31. 31.
    O. Engler, M. Crumbachb, and S. Li, Alloy-Dependent Rolling Texture Simulation of Aluminium Alloys with a Grain-Interaction Model, Acta Mater., 2005, 53(8), p 2241–2257CrossRefGoogle Scholar
  32. 32.
    F. Madadi, F. Ashrafizadeh, and M. Shamanian, Optimization of Pulsed TIG Cladding Process of Stellite Alloy on Carbon Steel Using RSM, J Alloy Compd., 2012, 510(1), p 71–77CrossRefGoogle Scholar
  33. 33.
    Contents of Software: Design Experts (Trial version), Stat-Ease, Inc., Minneapolis, USAGoogle Scholar
  34. 34.
    K. Velmanirajan, A. Syed Abu Thaheer, R. Narayanasamy, and C. Ahamed Basa, Numerical Modeling of Aluminium Sheets Formability Using Response Surface Methodology, Mater. Des., 2012, 41, p 239–254CrossRefGoogle Scholar
  35. 35.
    I. Lonardeli, H.-R. Wenk, L. Lutterotti, and M. Goodwin, Texture Analysis from Synchrotron Diffraction Images with the Rietveld Method: Dinosaur Tendon and Salmon Scale, J. Synchrotron Radiat., 2005, 12, p 354–360CrossRefGoogle Scholar
  36. 36.
    L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics, Addison-Wesley, Reading, 1981Google Scholar
  37. 37.
    K. Helming, Textureapproximation durch Modell komponenten. Habilitation, TU Clausthal 1995, Cuvillier Verlag Göttingen, 2000Google Scholar
  38. 38.
    G.E.P. Box and D.R. Cox, An Analysis of Transformations, J. R. Stat. Soc. B, 1964, 26(2), p 211–252Google Scholar
  39. 39.
    R.J. Carroll and D. Ruppert, On Prediction and the Power Transformation Family, Biometrika, 1981, 68, p 609–615CrossRefGoogle Scholar
  40. 40.
    M.H.A. DeGroot, Conversation with George Box, Stat. Sci., 1987, 2(3), p 239–258CrossRefGoogle Scholar
  41. 41.
    D.J. Handelsman, Optimal Power Transformations for Analysis of Sperm Concentration and Other Semen Variables, J. Androl., 2002, 23(5), p 629–634Google Scholar
  42. 42.
    S. Gluzman and V.I. Yukalov, Self-Similar Power Transforms in Extrapolation Problems, J. Math. Chem., 2006, 39(1), p 47–56CrossRefGoogle Scholar
  43. 43.
    R.J. Howarth and S.A.M. Earle, Application of a Generalized Power Transformation to Geochemical Data, J. Math. Geol., 1979, 11(1), p 45–62CrossRefGoogle Scholar
  44. 44.
    J.L. Peters, L. Rushton, A.J. Sutton, D.R. Jones, K.R. Abrams, and M.A. Mugglestone, Bayesian Methods for the Cross-Design Synthesis of Epidemiological and Toxicological Evidence, J. R. Stat. Soc. C, 2005, 54(1), p 159–172CrossRefGoogle Scholar
  45. 45.
    D. Prabhakaran, C.A. Basha, T. Kannadasan, and P. Aravinthan, Removal of Hydroquinone from Water by Electrocoagulation Using Flow Cell and Optimization by Response Surface Methodology, J. Environ. Sci. Health. A, 2010, 45, p 400–412CrossRefGoogle Scholar
  46. 46.
    C. Ahmed Basha, P.A. Soloman, M. Velan, N. Balasubramanian, and L. Roohil Kareem, Participation of Electrochemical Steps in Treating Tannery Wastewater, Ind. Eng. Chem. Res., 2009, 48(22), p 9786–9796. doi: 10.1021/ie900464s CrossRefGoogle Scholar
  47. 47.
    K. Velmanirajan, A. Syed Abu Thaheer, R. Narayanasamy, and C. Ahmed Basha, Formability Based Crystallographic Texture Analysis In Aluminium Alloy Using Response Surface Methodology, Unpublished report, Department of Mechanical Engineering, Kongunadu College of Engineering, Thottium, IndiaGoogle Scholar
  48. 48.
    R. Narayanasamy, R. Ravindran, K. Manonmani, and J. Satheesh, A Crystallographic Texture Perspective Formability Investigation of Aluminium 5052 Alloy Sheets at Various Annealing Temperatures, Mater. Des., 2009, 30, p 1804–1817CrossRefGoogle Scholar
  49. 49.
    R. Ravindran, K. Manonmani, and R. Narayanasamy, An Analysis of Void Coalescence in AL 5052 Alloy Sheets Annealed at Different Temperatures Formed Under Different Stress Conditions, Mater. Sci. Eng. A, 2009, 507, p 252–267CrossRefGoogle Scholar
  50. 50.
    J. Hu, K. Ikeda, and T. Murakami, Effect of Texture Components on Plastic Anisotropy and Formability of Aluminium Alloy Sheets, J. Mater. Process. Technol., 1998, 73, p 49–56CrossRefGoogle Scholar
  51. 51.
    K.O. Pedersena, O.-G. Lademoa, T. Berstada, T. Furub, and O.S. Hopperstadc, Influence of Texture and Grain Structure on Strain Localisation and Formability for Al-Mg-Si Alloys, J. Mater. Process. Technol., 2008, 200, p 77–93CrossRefGoogle Scholar
  52. 52.
    W. Mao, Modeling of Rolling Texture in Aluminum, Mater. Sci. Eng. A, 1998, 257, p 171–177CrossRefGoogle Scholar
  53. 53.
    O. Engler, X.W. Kong, and K. Lucke, Mechanisms of Recrystallization Texture Formation in Aluminium Alloys, Acta Mater., 2001, 49, p 1701–1715CrossRefGoogle Scholar
  54. 54.
    J. Marek, M. Karlík, and P. Sláma, Textures of Aluminium Alloy Thin Sheets for Heat Exchangers Fins, Mater. Struct., 2001, 8(1), p 11–21Google Scholar
  55. 55.
    M. Kuroda and S. Ikawa, Texture Optimization of Rolled Aluminium Alloy Sheets Using a Genetic Algorithm, Mater. Sci. Eng. A, 2004, 385, p 235–244Google Scholar
  56. 56.
    K. Velmanirajan, A. Syed Abu Thaheer, R. Narayanasamy, R. Madhavan, and S. Suwas, Experimental Investigation of Forming Limit, Void Coalescence and Crystallographic Textures of Aluminium Alloy 8011 Sheet Annealed At Various Temperatures, Unpublished report, Department of Mechanical Engineering, Kongunadu College of Engineering, Thottium, IndiaGoogle Scholar
  57. 57.
    K. Velmanirajan, A. Syed Abu Thaheer, R. Narayanasamy, R. Madhavan, and S. Suwas, Effect of Annealing Temperature in Al 1145 Alloy Sheets on Formability, Void Coalescence, and Texture Analysis, J. Mater. Eng. Perform., 2012. doi: 10.1007/s11665-012-0358-1
  58. 58.
    O. Engler and K. Lucke, Mechanisms of Recrystalization Texture Formation in Aluminium Alloys, Scripta Metall., 1992, 27, p 1527–1532Google Scholar
  59. 59.
    Y. Zhou and K.W. Neale, Predictions of Forming Limit Diagrams Using a Rate-Sensitive Crystal Plasticity Model, Int. J. Mech. Sci., 1995, 37, p 1–7Google Scholar
  60. 60.
    M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, and A.D. Rollett, Cube Texture in Hot-Rolled Aluminium Alloy 1050 (AA1050)—Nucleation and Growth Behavior, Acta Mater., 2008, 56(13), p 3098–3108Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKongunadu College of Engineering and TechnologyThottiyam, TiruchirappalliIndia
  2. 2.Department of Production EngineeringNational Institute of TechnologyTiruchirappalliIndia
  3. 3.Department of ChemistryN.K.R Govt. Arts College (W)NamakkalIndia

Personalised recommendations