Advertisement

Journal of Materials Engineering and Performance

, Volume 22, Issue 11, pp 3530–3538 | Cite as

Optimization of Air Plasma Sprayed Thermal Barrier Coating Parameters in Diesel Engine Applications

  • M. Azadi
  • G. H. FarrahiEmail author
  • A. Moridi
Article

Abstract

In the present paper, an optimization of thermal barrier coating parameters is performed for diesel engine applications. The substrate is A356.0-T7, a cast aluminum alloy which has a vast application in diesel engines, and the alloy is coated by plasma sprayed ZrO2-8 wt.% Y2O3. Parameters including the feed rate of coating powders, the nozzle distance to specimen surfaces, and the coating thickness are optimized by thermal shock fatigue tests and bending tests. Optimum values of the feed rate and the nozzle distance are 30 g/min and 80 mm, respectively, when the objective is considered as maximizing the bending strength. Thermal shock tests demonstrate that lower thickness of coating layers has a better lifetime. By increasing the coating thickness, the thermal fatigue lifetime decreases. The reason is due to higher order of stresses near the interface of the substrate and the bond coat layer, calculated by a finite element simulation. One suggestion to improve the lifetime is to use multiple layers of coatings.

Keywords

coating parameters diesel engine optimization thermal barrier coating thermal shock fatigue test 

Notes

Acknowledgments

Authors are grateful for the financial support by Irankhodro Powertrain Company (IPCo.) through a grant number of 450008. Authors also thank Mr. Mafi and Mr. Roozban for experiments and Mr. Dahaghin for the coating process.

References

  1. 1.
    R. Prasad and N.K. Samria, Heat Transfer and Stress Fields in the Inlet and Exhaust Valves of a Semi-Adiabatic Diesel Engine, Comput. Struct., 1990, 34(5), p 765–777CrossRefGoogle Scholar
  2. 2.
    A. Moridi, M. Azadi, and G.H. Farrahi, Coating Thickness and Roughness Effect on Stress Distribution of A356.0 Under Thermo-Mechanical Loadings, Proc. Eng., 2011, 10, p 1372–1377Google Scholar
  3. 3.
    R. Kamo and W. Bryzik, Adiabatic Turbo-Compound Engine Performance Prediction, SAE International, Paper No. 780068, 1978Google Scholar
  4. 4.
    R. Kamo and W. Bryzik, Ceramics in Heat Engines, SAE International, Paper No. 790645, 1979Google Scholar
  5. 5.
    R. Kamo and W. Bryzik, Cummins-TRADOCOM Adiabatic Turbo-Compounded Engine Program, SAE International, Paper No. 810070, 1981Google Scholar
  6. 6.
    W. Bryzik and R. Kamo, TACOM/Cummins Adiabatic Engine Program, SAE International, Paper No. 830314, 1983Google Scholar
  7. 7.
    R. Kamo and W. Bryzik, Cummins/TACOM Advanced Adiabatic Engine, SAE International, Paper No. 840428, 1984Google Scholar
  8. 8.
    R.R. Sekar, R. Kamo, and J.C. Wood, Advanced Adiabatic Diesel Engine for Passenger Cars, SAE International, Paper No. 840434, 1984Google Scholar
  9. 9.
    H.M. Choi, B.S. Kang, W.K. Choi, D.G. Choi, S.K. Choi, J.C. Kim, Y.K. Park, and G.M. Kim, Effect of the Thickness of Plasma Sprayed Coating on Bond Strength and Thermal Fatigue Characteristics, J. Mater. Sci., 1998, 33, p 5895–5899CrossRefGoogle Scholar
  10. 10.
    T. Hejwowski and A. Weronski, The Effect of Thermal Barrier Coatings on Diesel Engine Performance, Vacuum, 2002, 65, p 427–432CrossRefGoogle Scholar
  11. 11.
    I. Taymaz, K. Cakir, and A. Mimaroglu, Experimental Study of Effective Efficiency in a Ceramic Coated Diesel Engine, Surf. Coat. Technol., 2005, 200, p 1182–1185CrossRefGoogle Scholar
  12. 12.
    I. Taymaz, The Effect of Thermal Barrier Coatings on Diesel Engine Performance, Surf. Coat. Technol., 2007, 201, p 5249–5252CrossRefGoogle Scholar
  13. 13.
    P. Ramu and C.G. Saravanan, Effect of ZrO 2 -Al 2 O 3 and SiC Coating on Diesel Engine to Study the Combustion and Emission Characteristics, SAE International, Paper No. 2009-01-1435, 2009Google Scholar
  14. 14.
    R. Kitazawa, M. Tanaka, Y. Kagawa, and Y.F. Liu, Damage Evolution of TBC System Under In-Phase Thermo-Mechanical Tests, Mater. Sci. Eng., 2010, B173, p 130–134CrossRefGoogle Scholar
  15. 15.
    C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2009, 18(2), p 223–230CrossRefGoogle Scholar
  16. 16.
    A. Scrivani, G. Rizzi, U. Bardi, C. Giolli, M. Muniz Miranda, S. Ciattini, A. Fossati, and F. Borgioli, Thermal Fatigue Behavior of Thick and Porous Thermal Barrier Coatings Systems, J. Therm. Spray Technol., 2007, 16(5-6), p 816–821CrossRefGoogle Scholar
  17. 17.
    “Deep Thermo Shock Test,” Test Procedure, FEV Company, No. 12686-0100SD-002Google Scholar
  18. 18.
    “General Endurance Test,” Test Procedure, Peugeot Company, No. CDI/DII/DIL/SR/T2752/JCOGoogle Scholar
  19. 19.
    A. Uzun, I. Cevik, and M. Akcil, Effects of Thermal Barrier Coating on a Turbocharged Diesel Engine Performance, Surf. Coat. Technol., 1999, 116-119, p 505–507CrossRefGoogle Scholar
  20. 20.
    M. Ranjbar-Far, J. Absi, G. Mariaux, and F. Dubois, Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method, Mater. Des., 2010, 31, p 772–781CrossRefGoogle Scholar
  21. 21.
    E. Buyukkaya, T. Engin, and M. Cerit, Effects of Thermal Barrier Coating on Gas Emissions and Performance of a LHR Engine with Different Injection Timings and Valve Adjustments, Energy Convers. Manag., 2006, 47, p 1298–1310CrossRefGoogle Scholar
  22. 22.
    Y. Liu, C. Persson, and J. Wigren, Experimental and Numerical Life Prediction of Thermally Cycled Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 415–424CrossRefGoogle Scholar
  23. 23.
    “Properties and Selection: Nonferrous Alloys and Special-Purposed Materials,” ASM Handbook, Vol 2, 1992Google Scholar
  24. 24.
    J.G. Kaufman, “Properties of Aluminum Alloys; Tensile, Creep and Fatigue Data at High and Low Temperature,” The Aluminum Association, Inc. and ASM International, 1999Google Scholar
  25. 25.
    E. Tzimas, H. Mullejansi, S.D. Peteves, J. Bressers, and W. Stamm, Failure of Thermal Barrier Coating Systems Under Cyclic Thermo-Mechanical Loading, Acta Metall., 2000, 48, p 4699–4707Google Scholar
  26. 26.
    M.B. Grieb, H.J. Christ, and B. Plege, Thermo-Mechanical Fatigue of Cast Aluminum Alloys for Cylinder Head Applications: Experimental Characterization and Life Prediction, Proc. Eng., 2010, 2, p 1767–1776CrossRefGoogle Scholar
  27. 27.
    J.H. Lienhard and J.H. Lienhard, A Heat Transfer Textbook, 3rd ed., Phlogiston Press Publication, Cambridge, 2003Google Scholar
  28. 28.
    D. Zhu and R.A. Miller, Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings, Mater. Sci. Eng., 1998, A245, p 212–223Google Scholar
  29. 29.
    R. Soltani, H. Samadi, E. Garcia, and T.W. Coyle, Development of Alternative Thermal Barrier Coatings for Diesel Engines, SAE International, Paper No. 2005-01-0650, 2005Google Scholar
  30. 30.
    C. Zhang, H.L. Liao, W.Y. Li, G. Zhang, C. Coddet, C.J. Li, C.X. Li, and X.J. Ning, Characterization of YSZ Solid Oxide Fuel Cells Electrolyte Deposited by Atmospheric Plasma Spraying and Low Pressure Plasma Spraying, J. Therm. Spray Technol., 2006, 15(4), p 593–603CrossRefGoogle Scholar
  31. 31.
    T. Gocmez, A. Awarke, and S. Pischinger, A New Low Cycle Fatigue Criterion for Isothermal and Out-of-Phase Thermo-Mechanical Loading, Int. J. Fatigue, 2010, 32, p 769–779CrossRefGoogle Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  1. 1.Materials Life Estimation and Improvement Laboratory, School of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.Fatigue and Wear WorkgroupIrankhodro Powertrain Company (IPCo.)TehranIran

Personalised recommendations