Journal of Materials Engineering and Performance

, Volume 22, Issue 11, pp 3389–3397 | Cite as

Forming-Limit Diagrams for Magnesium AZ31B and ZEK100 Alloy Sheets at Elevated Temperatures

  • Aravindha R. Antoniswamy
  • Alexander J. Carpenter
  • Jon T. Carter
  • Louis G. HectorJr.
  • Eric M. Taleff


Modern design and manufacturing methodologies for magnesium (Mg) sheet panels require formability data for use in computer-aided design and computer-aided engineering tools. To meet this need, forming-limit diagrams (FLDs) for AZ31B and ZEK100 wrought Mg alloy sheets were developed at elevated temperatures for strain rates of 10−3 and 10−2 s−1. The elevated temperatures investigated range from 250 to 450 °C for AZ31B and 300 to 450 °C for ZEK100. The FLDs were generated using data from uniaxial tension, biaxial bulge, and plane-strain bulge tests, all carried out until specimen rupture. The unique aspect of this study is that data from materials with consistent processing histories were produced using consistent testing techniques across all test conditions. The ZEK100 alloy reaches greater major true strains at rupture, by up to 60%, than the AZ31B alloy for all strain paths at all temperatures and strain rates examined. Formability limits decrease only slightly with a decrease in temperature, less than 30% decrease for AZ31B and less than 35% decrease for ZEK100 as the temperature decreases from 450 to 300 °C. This suggests that forming processes at 250-300 °C are potentially viable for manufacturing complex Mg components.


AZ31B elevated temperature formability forming-limit diagram magnesium mechanical testing ZEK100 



The authors are very grateful to Joshua Lasceski, Robert Kubic Jr., Dr. Anil Sachdev, and Dr. Mark Verbrugge from General Motors, Warren, MI for their assistance. The authors acknowledge support from the Norman Hackerman Advanced Research Program (Project Number 003658-0161-2009).


  1. 1.
    J.T. Carter, V. Savic, L.G. Hector, Jr., A.R. Melo, and P.E. Krajewski, Structural Evaluation of an Experimental Aluminum/Magnesium Decklid, SAE Int. J. Mater. Manuf., 2011, 4(1), p 166–174Google Scholar
  2. 2.
    R. Verma, and J.T. Carter, Quick Plastic Forming of a Decklid Inner Panel with Commercial AZ31 Magnesium Sheet, SAE [Tech. Pap.], 2006, 2006-01-0525Google Scholar
  3. 3.
    A.A. Luo, Magnesium: Current and Potential Automotive Applications, JOM, 2002, 54(2), p 42–48CrossRefGoogle Scholar
  4. 4.
    P.E. Krajewski, Elevated Temperature Forming of Sheet Magnesium Alloys, SAE [Tech. Pap.], 2001, 2001-01-3104Google Scholar
  5. 5.
    J.A. Yasi, L.G. Hector, Jr., and D. Trinkle, First-Principles Data for Solid-Solution Strengthening of Magnesium: From Geometry and Chemistry to Properties, Acta Mater., 2010, 58(17), p 5704–5713CrossRefGoogle Scholar
  6. 6.
    J.A. Yasi, L.G. Hector, Jr., and D.R. Trinkle, Prediction of Thermal Cross-Slip in Magnesium Alloys from a Geometric Interaction Model, Acta Mater., 2012, 60(5), p 2350–2358CrossRefGoogle Scholar
  7. 7.
    G.I. Taylor, Plastic Strain in Metals, J. Inst. Met., 1938, 62, p 307–324Google Scholar
  8. 8.
    A.D. Rollett, and S.I. Wright, Chap. 5: Typical Textures in Metals, Texture and Anisotropy, U.F. Kocks, C.N. Tome, and H.-R. Wenk, Eds., Cambridge University Press, 2000, p 204–206Google Scholar
  9. 9.
    J. Min, Y. Cao, J.T. Carter, and R. Verma, Comparison of Tensile Properties and Crystallographic Textures of Three Magnesium Alloy Sheets, Magnesium Technology 2012, S.M. Mathaudhu, W.H. Sillekens, N.R. Neelameggham, and N. Hort, Eds., March 11-15, 2012 (Orlando, FL, USA), Wiley, 2012, p 355–360Google Scholar
  10. 10.
    S.R. Agnew and O. Duygulu, Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B, Int. J. Plast., 2005, 21(6), p 1161–1193CrossRefGoogle Scholar
  11. 11.
    G. Kurz, Heated Hydro-Mechanical Deep Drawing of Magnesium Sheet Metal, Magnesium Technology 2004, A.A. Luo, Ed., March 14-18, 2004 (Charlotte, NC, USA), Wiley, 2004, p 67–71Google Scholar
  12. 12.
    M.W. Toaz and E.J. Ripling, Correlation of the Tensile Properties of Pure Magnesium and Four Commercial Alloys with Their Mode of Fracturing, J. Met., 1956, 8, p 936–946Google Scholar
  13. 13.
    P.E. Krajewski, Elevated Temperature Behavior of Sheet Magnesium Alloys, Magnesium Technology 2002, H.I. Kaplan, Ed. February 17-21, 2002 (Seattle, WA, USA), TMS, 2002, p 169–174Google Scholar
  14. 14.
    P.A. Sherek, A.J. Carpenter, L.G. Hector Jr., P.E. Krajewski, J.T. Carter, J. Lasceski, and E.M. Taleff, The Effects of Strain and Stress State in Hot Forming of Mg AZ31 Sheet, Magnesium Technology 2012, S.M. Mathaudhu, W.H. Sillekens, N.R. Neelameggham, and N. Hort, Eds., March 11-15, 2012 (Orlando, FL, USA), Wiley, 2012, p 301–306Google Scholar
  15. 15.
    F. Abu-Farha, R. Verma, and L.G. Hector, Jr., High Temperature Composite Forming Limit Diagrams of Four Magnesium AZ31B Sheets Obtained by Pneumatic Stretching, J. Mater. Process. Technol., 2012, 212(6), p 1414–1429CrossRefGoogle Scholar
  16. 16.
    E. Hsu, J. Carsley, and R. Verma, Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures, J. Mater. Eng. Perform., 2008, 17(3), p 288–296CrossRefGoogle Scholar
  17. 17.
    H.J. Kim, S.C. Choi, K.T. Lee, and H.Y. Kim, Experimental Determination of Forming Limit Diagram and Spring back Characteristics of AZ31B Mg Alloy Sheets at Elevated Temperatures, Mater. Trans., 2008, 49(5), p 1112–1119CrossRefGoogle Scholar
  18. 18.
    F.K. Chen and T.B. Huang, Formability of Stamping Magnesium-alloy AZ31 Sheets, J. Mater. Process. Technol., 2003, 142(3), p 643–647CrossRefGoogle Scholar
  19. 19.
    C.J. Neil and S.R. Agnew, Crystal Plasticity-based Forming Limit Prediction for Non-Cubic Metals: Application to Mg Alloy AZ31B, Int. J. Plast., 2009, 25(3), p 379–398CrossRefGoogle Scholar
  20. 20.
    Y. Chino, H. Iwasaki, and M. Mabuchi, Stretch Formability of AZ31Mg Alloy Sheets at Different Testing Temperatures, Mater. Sci. Eng. A, 2007, 466(1-2), p 90–95CrossRefGoogle Scholar
  21. 21.
    H.W. Liu, S.J. Yao, W.L. Liu, and Z.D. Zhang, Forming Limit Diagram of Magnesium Alloy ZK60 at Elevated Temperatures, Adv. Mater. Res., 2011, 308-310, p 2442–2445CrossRefGoogle Scholar
  22. 22.
    L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals, Vol 5, Taylor & Francis, New York, 2003, p 209–217Google Scholar
  23. 23.
    J.T. Carter, and R.K. Mishra, Two-Step Forming with Intermediate Anneal of ZEK100 Alloy Sheet, Proceedings of the 9th International Conference on Magnesium Alloys and Their Applications, W.J. Poole, and K.U. Kainer, Eds., July 8-12, 2012 (Vancouver, BC, Canada), 2012, p 695–702Google Scholar
  24. 24.
    K. Hantzsche, J. Wendt, K.U. Kainer, J. Bohlen, and D. Letzig, Mg Sheet: The Effect of Process Parameters and Alloy Composition on Texture and Mechanical Properties, JOM, 2009, 61(8), p 38–42CrossRefGoogle Scholar
  25. 25.
    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, The Texture and Anisotropy of Magnesium-Zinc-Rare Earth Alloy Sheets, Acta Mater., 2007, 55(6), p 2101–2112CrossRefGoogle Scholar
  26. 26.
    F.W. Bach, B.A. Behrens, M. Rodman, A. Rossberg, and G. Kurzb, Macroscopic Damage by the Formation of Shear Bands During the Rolling and Deep Drawing of Magnesium Sheets, JOM, 2005, 57(5), p 57–61CrossRefGoogle Scholar
  27. 27.
    F.W. Bach, A. Roßberg, M. Schäperkötter, M. Schaper, L. Walden, and J. Weber, Today’s Sheet Metal Materials and their Forming Properties, Materialwiss Werkstofftech, 2004, 35(7), p 423–430 (in German)CrossRefGoogle Scholar
  28. 28.
    S. Ertürk, W. Brocks, J. Bohlen, D. Letzig, and D. Steglich, A Constitutive Law for the Thermo-mechanical Modelling of Magnesium Alloy Extrusion, Int. J. Mater. Form, 2012, 5(4), p 325–339CrossRefGoogle Scholar
  29. 29.
    S. Spigarelli, M.E. Mehtedi, and P. Ricci, Hot Working of the ZEK200 Magnesium Alloy, Mater. Sci. Forum, 2009, 604-605, p 212–222CrossRefGoogle Scholar
  30. 30.
    W.F. Hosford and R.M. Caddell, Metal Forming: Metallurgy and Mechanics, Vol 15, Cambridge University Press, Cambridge, 2007, p 241CrossRefGoogle Scholar
  31. 31.
    H.N. Han and K.H. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142(1), p 231–238CrossRefGoogle Scholar
  32. 32.
    K. Yoshida et al., An Experimental Study of Ultimate Ductility and Average Ductility in Steel Sheet Forming, Rep. Inst. Phys. Chem. Res., 1968, 44, p 128–139 (in Japanese)Google Scholar
  33. 33.
    J. Min, L.G. Hector Jr., J. Lin, and J.T. Carter, Analytical Method for Forming Limit Diagram Prediction with Application to a Magnesium ZEK100-O Alloy, J. Mater. Eng. Perform., 2013. doi: 10.1007/s11665-013-0582-3
  34. 34.
    M.A. Kulas, P.E. Krajewski, J.R. Bradley, and E.M. Taleff, Forming Limit Diagrams for AA5083 under SPF and QPF Conditions, Mater. Sci. Forum, 2007, 551-552, p 129–134CrossRefGoogle Scholar
  35. 35.
    M.A. Kulas, P.E. Krajewski, J.R. Bradley, and E.M. Taleff, Forming-Limit Diagrams for Hot-Forming of AA5083 Aluminum Sheet: Continuously Cast Material, J. Mater. Eng. Perform., 2007, 16(3), p 208–313CrossRefGoogle Scholar
  36. 36.
    T. Sheppard, Press Quenching of Aluminium Alloys, Mater. Sci. Technol., 1988, 4(7), p 635–643Google Scholar
  37. 37.
    V. Savic, and L.G. Hector Jr., Tensile Deformation and Fracture of Press Hardened Boron Steel Using Digital Image Correlation, SAE [Tech. Pap.], 2007, 2007-01-0790Google Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • Aravindha R. Antoniswamy
    • 1
  • Alexander J. Carpenter
    • 2
  • Jon T. Carter
    • 3
  • Louis G. HectorJr.
    • 3
  • Eric M. Taleff
    • 1
    • 4
  1. 1.Materials Science and Engineering ProgramUniversity of Texas at AustinAustinUSA
  2. 2.Engineering DynamicsSouthwest Research InstituteSan AntonioUSA
  3. 3.Research and DevelopmentGeneral Motors CorporationWarrenUSA
  4. 4.Mechanical EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations