Advertisement

Grain Size Control of the Magnetic Nanoparticles by Solid State Route Modification

  • A. C. H. Barreto
  • V. R. Santiago
  • R. M. Freire
  • S. E. Mazzetto
  • J. M. Sasaki
  • I. F. Vasconcelos
  • J. C. Denardin
  • Giuseppe Mele
  • Luigi Carbone
  • P. B. A. FechineEmail author
Article

Abstract

The CoFe2O4 and NiFe2O4 nanoparticles were synthesized exploiting a co-precipitation method and afterward calcinated at 400 °C through two different experimental apparatus: a conventional muffle and rotatory oven. X-ray diffraction (XRD) analysis revealed that nanocrystalline ferrites grew with a face center cubic structure (fcc) and Fd3m symmetry space group. XRD, transmission electron microscopy, and magnetic measurements confirmed the compositional homogeneity and the narrow size particle distribution (6-8 nm) of the sample thermally treated in a rotary oven, in all likelihood due to the sample’s constant turning movement. The size of the magnetic particles is extremely important and influences the choice of a potential technological application. For this reason, our study emerges as a new and simple innovating procedure to control the size of magnetic nanoparticles.

Keywords

CoFe2O4 magnetic nanoparticles NiFe2O4 size grain control 

Notes

Acknowledgments

The support from CAPES, Funcap, and CNPq (Brazilian agencies); Fondecyt 1110252; Millennium Science Nucleus, Basic and Applied Magnetism Grant No. P10-061-F; and CONICYT BASAL CEDENNA FB0807 (Chilean agencies) is gratefully acknowledged.

References

  1. 1.
    L. Bem Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.J. Vaulay, V. Richard, J.M. Grenèche, F. Villain, and F. Fiévet, Magnetic Properties of CoFe1.9RE0.1O4 Nanoparticles (RE = La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) Prepared in Polyol, J. Magn. Magn. Mater., 2008, 320, p 3242–3250CrossRefGoogle Scholar
  2. 2.
    J. Giri, P. Pradhan, V. Somani, H. Chelawat, S. Chhatre, R. Banerjee, and D. Bahadur, Synthesis and Characterizations of Water-Based Ferrofluids of Substituted Ferrites [Fe1−xBxFe2O4, B = Mn, Co (x = 0-1)] for Biomedical Applications, J. Magn. Magn. Mater., 2008, 320, p 724–730CrossRefGoogle Scholar
  3. 3.
    V.I. Shubayev, T.R. Pisanic, II, and S. Jin, Magnetic Nanoparticles for Theragnostics, Adv. Drug Deliv. Rev., 2009, 61, p 467–477CrossRefGoogle Scholar
  4. 4.
    E.H. Kim, H.S. Lee, B.K. Kwak, and B.K. Kim, Synthesis of Ferrofluid with Magnetic Nanoparticles by Sonochemical Method for MRI, Contrast Agent, J. Magn. Magn. Mater., 2005, 289, p 328–330CrossRefGoogle Scholar
  5. 5.
    P. Laokul, V. Amornkitbamrung, S. Seraphin, and S. Maensiri, Characterization and Magnetic Properties of Nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 Powders Prepared by the Aloe Vera Extract Solution, Curr. Appl. Phys., 2011, 11, p 101–108CrossRefGoogle Scholar
  6. 6.
    L.J. Cote, A.S. Teja, A.P. Wilkinson, and Z.J. Zhang, Continuous Hydrothermal Synthesis of CoFe2O4 Nanoparticles, Fluid Phase Equilib., 2003, 210, p 307–317CrossRefGoogle Scholar
  7. 7.
    S.B. Waje, M. Hashim, W.D.W. Yusoff, and Z. Abbas, X-Ray Diffraction Studies on Crystallite of CoFe2O4 Nanoparticles Prepared Using Mechanical Alloying and Sintering, Appl. Surf. Sci., 2010, 256, p 3122–3127CrossRefGoogle Scholar
  8. 8.
    Y. Shi, J. Ding, and L.J. Wang, NiFe2O4 Ultrafine Particles Prepared by Co-Precipitation/Mechanical Alloying, J. Magn. Magn. Mater., 1999, 205, p 249–254CrossRefGoogle Scholar
  9. 9.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, and I. Nakatani, Mixed Spinel Structure in Nanocrystalline NiFe2O4, Phys. Rev. B, 2001, 63, p 184108CrossRefGoogle Scholar
  10. 10.
    Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, and L. Zuo, Preparation and Application of Magnetic Fe3O4 Nanoparticles for Wastewater Purification, Sep. Purif. Technol., 2009, 68, p 312–319CrossRefGoogle Scholar
  11. 11.
    S. Neveu, A. Bee, M. Robineau, and D. Talbot, Size-Selective Chemical Synthesis of Tartrate Stabilized Cobalt Ferrite Ionic Magnetic Fluid, J. Colloid Interface Sci., 2002, 255, p 293–298CrossRefGoogle Scholar
  12. 12.
    C. Boyer, M.R. Whittaker, V. Bulmus, J. Liu, and T.P. Davis, The Design and Utility of Polymer-Stabilized Iron-Oxide Nanoparticles for Nanomedicine Applications, NPG Asia Mater., 2010, 2, p 23–30CrossRefGoogle Scholar
  13. 13.
    A.O.G. Maia, C.T. Meneses, A.S. Menezes, W.H. Flores, D.M.A. Melo, and J.M. Sasaki, Synthesis and X-Ray Structural Characterization of NiO Nanoparticles Obtained Through Gelatin, J. Non-Cryst. Solids, 2006, 352, p 3729–3733CrossRefGoogle Scholar
  14. 14.
    H.M. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Crystallogr., 1967, 22, p 151–152CrossRefGoogle Scholar
  15. 15.
    R.A. Young, A. Sakthivel, T.S. Moss, and C.O. Paiva-Santos, DBWS-9411: An Upgrade of the DBWS Programs for Rietveld Refinement with PC and Mainframe Computers, J. Appl. Crystallogr., 1995, 28, p 366–367CrossRefGoogle Scholar
  16. 16.
    G. Caglioti, A. Paoletti, and F.P. Ricci, Choice of Collimator for a Crystal Spectrometer for Neutron Diffraction, Nucl. Instrum. Methods, 1958, 35, p 223–228Google Scholar
  17. 17.
    G.K. Williamsom and W.H. Hall, X-Ray Line Broadening from Filed Aluminum and Wolfram, Acta Metall., 1953, 1, p 22CrossRefGoogle Scholar
  18. 18.
    L.J. Zhao and Q. Jiang, Effects of Applied Magnetic Field and Pressures on the Magnetic Properties of Nanocrystalline CoFe2O4 Ferrite, J. Magn. Magn. Mater., 2010, 322, p 2485–2487CrossRefGoogle Scholar
  19. 19.
    D.L. Zhao, X.W. Zeng, Q.S. Xia, and J.T. Tang, Preparation and Coercivity and Saturation Magnetization Dependence of Inductive Heating Property of Fe3O4 Nanoparticles in an Alternating Current Magnetic Field for Localized Hyperthermia, J. Alloy. Compd., 2009, 469, p 215–218CrossRefGoogle Scholar
  20. 20.
    B.P. Rao, G.S.N. Rao, A.M. Kumar, K.H. Rao, Y.L.N. Murthy, S.M. Hong, C.-O. Kim, and C. Kim, Soft Chemical Synthesis and Characterization of Ni0.65Zn0.35Fe2O4 Nanoparticles, J. Appl. Phys., 2007, 101, p 123902-1–123902-4Google Scholar
  21. 21.
    Z. Wang, B. Shen, Z. Aihua, and N. He, Synthesis of Pd/Fe3O4 Nanoparticle-Based Catalyst for the Cross-Coupling of Acrylic Acid with Iodobenzene, Chem. Eng. J., 2005, 113, p 27–34CrossRefGoogle Scholar
  22. 22.
    A.C.H. Barreto, V.R. Santiago, S.E. Mazzetto, J.C. Denardin, R. Lavín, G. Mele, M.E.N.P. Ribeiro, I.G.P. Vieira, T. Gonçalves, N.M.P.S. Ricardo, and P.B.A. Fechine, Magnetic Nanoparticles for a New Drug Delivery System to Control Quercetin Releasing for Cancer Chemotherapy, J. Nanopart. Res., 2011, 13, p 6545–6553CrossRefGoogle Scholar
  23. 23.
    A.C.H. Barreto, F.J.N. Maia, V.R. Santiago, V.G.P. Ribeiro, J.C. Denardin, G. Mele, L. Carbone, D. Lomonaco, S.E. Mazzetto, and P.B.A. Fechine, Novel Ferrofluids Coated with a Renewable Material Obtained from Cashew Nut Shell Liquid, Microfluid. Nanofluid., 2012, 12, p 677–686CrossRefGoogle Scholar
  24. 24.
    Y.I. Kim, D. Kim, and C.S. Lee, Synthesis and Characterization of CoFe2O4 Magnetic Nanoparticles Prepared by Temperature-Controlled Coprecipitation Method, Phys. B, 2003, 337, p 42–51CrossRefGoogle Scholar
  25. 25.
    A. Ahlawat, V.G. Sathe, V.R. Reddy, and A. Gupta, Mossbauer, Raman and X-Ray Diffraction Studies of Superparamagnetic NiFe2O4 Nanoparticles Prepared by Sol-Gel Auto-Combustion Method, J. Magn. Magn. Mater., 2011, 323, p 2049–2054CrossRefGoogle Scholar
  26. 26.
    S. Krehula and S. Musić, Influence of Cobalt Ions on the Precipitation of Goethite in Highly Alkaline Media, Clay Miner., 2008, 43, p 95–105CrossRefGoogle Scholar
  27. 27.
    D.P.E. Dickson and F.J. Berry, Mössbauer Spectroscopy, Cambridge University Press, Cambridge, MA, 1986CrossRefGoogle Scholar
  28. 28.
    A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, J.L. López, R. Paniago, and A.I.C. Persiano, Structure and Magnetic Properties of Nanostructured Ni-Ferrite, J. Magn. Magn. Mater., 2001, 226–230, p 1379–1381CrossRefGoogle Scholar
  29. 29.
    D.R. Patil and B.K. Chougule, Effect of Copper Substitution on Electrical and Magnetic Properties of NiFe2O4 Ferrite, Mater. Chem. Phys., 2009, 117(2009), p 35–40CrossRefGoogle Scholar

Copyright information

© ASM International 2013

Authors and Affiliations

  • A. C. H. Barreto
    • 1
    • 2
  • V. R. Santiago
    • 1
    • 2
  • R. M. Freire
    • 1
  • S. E. Mazzetto
    • 2
  • J. M. Sasaki
    • 3
  • I. F. Vasconcelos
    • 4
  • J. C. Denardin
    • 5
  • Giuseppe Mele
    • 6
  • Luigi Carbone
    • 7
  • P. B. A. Fechine
    • 1
    Email author
  1. 1.Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará – UFCFortalezaBrazil
  2. 2.Laboratório de Produtos e Tecnologia em Processos – LPT, Departamento de Química Orgânica e InorgânicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Laboratório de Raios X, Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  4. 4.Departamento de Engenharia Metalúrgica e de MateriaisUniversidade Federal do CearáFortalezaBrazil
  5. 5.Departamento de FísicaUniversidad de Santiago de Chile, USACHSantiagoChile
  6. 6.Dipartimento di Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly
  7. 7.Istituto Nanoscienze UOS Lecce – NNLLecceItaly

Personalised recommendations