Journal of Materials Engineering and Performance

, Volume 22, Issue 4, pp 1004–1009 | Cite as

Simulation of Deformation Texture Evolution During Multi Axial Forging of Interstitial Free Steel

  • N. P. Gurao
  • P. Kumar
  • A. Sarkar
  • H.-G. Brokmeier
  • Satyam Suwas
Article

Abstract

Bulk texture measurement of multi-axial forged body center cubic interstitial free steel performed in this study using x-ray and neutron diffraction indicated the presence of a strong {101}〈111〉 single texture component. Viscoplastic self-consistent simulations could successfully predict the formation of this texture component by incorporating the complicated strain path followed during this process and assuming the activity of {101}〈111〉 slip system. In addition, a first-order estimate of mechanical properties in terms of highly anisotropic yield locus and Lankford parameter was also obtained from the simulations.

Keywords

neutron diffraction texture viscoplastic self-consistent simulations 

References

  1. 1.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189CrossRefGoogle Scholar
  2. 2.
    M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51, p 427–556CrossRefGoogle Scholar
  3. 3.
    F.J. Humphreys, P.B. Prangnell, and R. Priestner, Fine-Grained Alloys by Thermomechanical Processing, Curr. Opin. Solid State Mater. Sci., 2001, 5, p 15–21CrossRefGoogle Scholar
  4. 4.
    A. Bhaumik, S. Biswas, S. Suwas, R.K. Ray, and D. Bhattacharjee, Evolution of Grain Boundary Microstructure and Texture in Interstitial-Free Steel Processed by Equal Channel Angular Extrusion, Metall. Mater. Trans. A, 2009, 40A, p 2729–2742CrossRefGoogle Scholar
  5. 5.
    A. Sarkar, A. Bhowmik, and S. Suwas, Microstructural Characterization of Ultrafine-Grain Interstitial-Free Steel by X-ray Diffraction Line Profile Analysis, Appl. Phys. A, 2009, 94, p 943–948CrossRefGoogle Scholar
  6. 6.
    S. Suwas, S. Biswas, and A. Bhowmick, Ultra-Fine Grain Materials by Severe Plastic Deformation: Application to Steels, Texture and Microstructure of Steels and Some Other Materials, A. Haldar, S. Suwas, & D. Bhattacharjee, Eds., Springer-Verlag, London, 2009, p 325–344Google Scholar
  7. 7.
    G.A. Salishchev, O.R. Valiakhmetov, V.A. Valitov, and S.K. Mukhtarov, Submicrocrystalline and Nanocrystalline Structure Formation in Materials and Search for Outstanding Superplastic Properties, Proceedings of the Conference on Superplasticity in Advanced Materials ICSAM-94, Vol 170–172, Materials Science Forum, 1994, p 121–130Google Scholar
  8. 8.
    S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov, and S.L. Semiatin, Production of Submicrocrystalline Structure in Large-Scale Ti-6Al-4V Billet by Warm Severe Deformation Processing, Scr. Mater., 2004, 51, p 1147–1151CrossRefGoogle Scholar
  9. 9.
    B.J. Han and Z. Xu, Grain Refinement Under Multi-Axial Forging in Fe-32%Ni Alloy, J. Alloys Compd., 2008, 457, p 279–285CrossRefGoogle Scholar
  10. 10.
    A. Bhowmik, S. Biswas, D. Satyaveer Singh, A. Sarkar, R.K. Ray, D. Bhattacharjee, and S. Suwas, Microstructure and Texture Evolution in IF Steel Processed by Multi-Axial Forging, Mater. Forum, 2011, 702–703, p 774–777CrossRefGoogle Scholar
  11. 11.
    R.Z. Valiev, Structure and Mechanical Properties of Ultrafine Grained Metals, Mater. Sci. Eng. A, 1997, 234, p 59–66CrossRefGoogle Scholar
  12. 12.
    N. Kamikawa, N. Tsuji, and Y. Minamino, Microstructure and Texture Through Thickness of Ultralow Carbon IF Steel Sheet Severely Deformed by Accumulative Roll-Bonding, Sci. Technol. Adv. Mater., 2004, 5, p 163–172CrossRefGoogle Scholar
  13. 13.
    I.J. Beyerlein, L.S. Tóth, C.N. Tomé, and S. Suwas, Role of Twinning on Texture Evolution of Silver During Equal Channel Angular Extrusion, Philos. Mag., 2007, 87, p 885–906CrossRefGoogle Scholar
  14. 14.
    B. Beausir, S. Suwas, L.S. Tóth, K.W. Neale, and J.J. Fundenberger, Analysis of Texture Evolution in Magnesium During Equal Channel Angular Extrusion, Acta Mater., 2008, 56, p 200–214CrossRefGoogle Scholar
  15. 15.
    S. Suwas, B. Beausir, L.S. Tóth, J.J. Fundenberger, and G. Gottstein, Texture Evolution in Commercially Pure Titanium After Warm Equal Channel Angular Extrusion, Acta Mater., 2011, 59, p 1121–1133CrossRefGoogle Scholar
  16. 16.
    J. Beyerlein and L.S. Tóth, Texture Evolution in Equal-Channel Angular Extrusion, Prog. Mater. Sci., 2009, 54, p 427–510CrossRefGoogle Scholar
  17. 17.
    M. Hua, C.I. Garcia, and A.J. DeArdo, Multi-phase Precipitates in Interstitial-Free Steels, Scr. Mater., 1993, 28, p 973–978CrossRefGoogle Scholar
  18. 18.
    P. Ghosh, C. Ghosh, R.K. Ray, and D. Bhattacharjee, Precipitation Behavior and Texture Formation at Different Stages of Processing in an Interstitial Free High Strength Steel, Scr. Mater., 2008, 59, p 276–278CrossRefGoogle Scholar
  19. 19.
    A. Bhaumik, “Severe Plastic Deformation of IF Steels,” Masters Thesis, IISc, Bangalore, 2008Google Scholar
  20. 20.
    K. Pawlik, Determination of the Orientation Distribution Function from Pole Figures in Arbitrarily Defined Cells, Phys. Stat. Sol. B, 1986, 134, p 477–483CrossRefGoogle Scholar
  21. 21.
    H.-G. Brokmeier, U. Zink, R. Schnieber, and B. Witassek, TEX-2 Texture Analysis at GKSS Research Center (Instrumentation and Application), Mater. Sci. Forum, 1998, 273–275, p 277–282CrossRefGoogle Scholar
  22. 22.
    R.A. Lebensohn and C.N. Tome, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41, p 2611–2624CrossRefGoogle Scholar
  23. 23.
    C.N. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas, The Relation Between Macroscopic and Microscopic Strain Hardening in fcc Polycrystals, Acta Metall., 1984, 32, p 1637–1653CrossRefGoogle Scholar
  24. 24.
    W.F. Hosford, Microstructural Changes During Deformation of [011] Fiber-Textured Metals, Trans. Met. Soc. AIME, 1964, 230, p 12–15Google Scholar
  25. 25.
    R.K. Ray, J.J. Jonas, and R.E. Hook, Cold Rolling and Annealing Textures in Low Carbon and Extra Low Carbon Steels, Int. Mater. Rev, 1994, 39, p 129–172CrossRefGoogle Scholar
  26. 26.
    U.F. Kocks, C.N. Tome, and H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, Cambridge, 1998Google Scholar
  27. 27.
    E.N.da C. Andrade and Y.S. Chow, The Glide Elements of Body-Centred Cubic Crystals, with Special Reference to the Effect of Temperature, Proc. Roy. Soc. A, 1940, 175, p 290–315CrossRefGoogle Scholar
  28. 28.
    T. Taokas, S. Takeuchi, and E. Furubayashi, Slip Systems and Their Critical Shear Stress in 3% Silicon Iron, J. Phys. Soc. Jpn., 1964, 19, p 701–711CrossRefGoogle Scholar
  29. 29.
    B. Beausir, C. Fresengeas, N.P. Gurao, L.S. Toth, and S. Suwas, Spatial Correlation in Grain Misorientation Distribution, Acta Mater., 2009, 57, p 5382–5395CrossRefGoogle Scholar
  30. 30.
    M. Pekguleryuz, M. Celikin, M. Hoseini, A. Becerra, and L. Mackenzie, Study on Edge Cracking and Texture Evolution During 150 °C Rolling of Magnesium Alloys: The Effects of Axial Ratio and Grain Size, J. Alloys Compd., 2012, 510, p 308–314CrossRefGoogle Scholar
  31. 31.
    I. Groma, X-ray Line Broadening due to an Inhomogeneous Dislocation Distribution, Phys. Rev. B, 1998, 57, p 7535–7542CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • N. P. Gurao
    • 1
  • P. Kumar
    • 1
  • A. Sarkar
    • 1
  • H.-G. Brokmeier
    • 2
    • 3
  • Satyam Suwas
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Institute of Materials Science and EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany
  3. 3.Helmholtz Zentrum GeesthachtGeesthachtGermany

Personalised recommendations