Journal of Materials Engineering and Performance

, Volume 21, Issue 12, pp 2535–2545 | Cite as

Phase Transformation Behavior of Hot Isostatically Pressed NiTi-X (X = Ag, Nb, W) Alloys for Functional Engineering Applications



Owing to their unique properties, NiTi-based shape memory alloys (SMAs) are highly attractive candidates for a lot of functional engineering applications like biomedical implants (stents), actuators, or coupling elements. Adding a third element is an effective measure to adjust or stabilize the phase transformation behavior to a certain extent. In this context, addition of alloying elements, which are low soluble or almost insoluble in the NiTi matrix is a promising approach and—with the exception of adding Nb—has rarely been reported in the literature so far, especially if the manufacturing of the net-shaped parts of these alloys is aspired. In the case of addition of elemental Nb, broadening of hysteresis between austenitic and martensitic phase transformation temperatures after plastic deformation of the Nb phase is a well-known effect, which is the key of function of coupling elements already established on the market. In the present study, we replaced Nb with additions of elemental Ag and W, both of which are almost insoluble in the NiTi matrix. Compared with Nb, Ag is characterized by higher ductility in combination with lower melting point, enabling liquid phase sintering already at moderate temperatures. Vice versa, addition of W might act in opposite manner considering its inherent brittleness combined with high melting temperature. In the present study, hot isostatic pressing was used for manufacturing such alloys starting from prealloyed NiTi powder and with the additions of Nb, Ag, and W as elemental powders. Microstructures, interdiffusion phenomena, phase transformation behaviors, and impurity contents were investigated aiming to better understand the influence of insoluble phases on bulk properties of NiTi SMAs.


hot isostatic pressing (HIP) NiTi Ag NiTi Nb NiTi W phase transformation temperatures Powder metallurgy Shape memory 



This study was financially supported by the Deutsche Forschungsgemeinschaft (DFG) within the research centre SFB 495 (shape memory technology) of Ruhr-Universität Bochum. Financial supports as well as contributions of Dr. D. Sebold (SEM images) and Mr. D. Rose (DSC-measurements) are gratefully acknowledged.


  1. 1.
    S. Saito, T. Wachi, and S. Hanada, A Study on the Machinability of a Ti Ni Shape Memory Alloy, Mater. Sci. Eng., 1992, 161, p 91–96Google Scholar
  2. 2.
    Y. Furuya, A. Sasaki, and M. Taya, Enhanced Mechanical Properties of TiNi Shape Memory Fiber/Al Matrix Composite, Mater. Trans. JIM, 1993, 34, p 224–227Google Scholar
  3. 3.
    M. Taya, Y. Yamamda, R. Watanabe, S. Shibata, and T. Mori, Strengthening Mechanism of TiNi Shape Memory Fiber/Al Matrix Composite, SPIE, 1992, 1916, p 373–383Google Scholar
  4. 4.
    S. Miyazaki, K. Otsuka, and Y. Suzuki, Transformation Pseudoelasticity and Deformation Behavior in a Ti-506 at% Ni Alloy, Scr. Metall. Mater., 1981, 15, p 287–292Google Scholar
  5. 5.
    J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.X.F. Wagner, and G. Eggeler, Influence of Ni on Martensitic Transformations in NiTi Shape Memory Alloys, Acta Mater., 2010, 58, p 3444–3458CrossRefGoogle Scholar
  6. 6.
    T.H. Nam, D.W. Chung, J.P. Noh, and H.W. Lee, Phase Transformation Behavior and Wire Drawing Properties of Ti-Ni-Mo Shape Memory Alloys, J. Mater. Sci., 2001, 36, p 4181–4188CrossRefGoogle Scholar
  7. 7.
    T. Kurita, H. Matsumoto, K. Sakamoto, K. Tanji, and H. Abe, Effect of Aluminium on the Transformation of NiTi Alloy, J. Alloys Comp., 2005, 396, p 193–196CrossRefGoogle Scholar
  8. 8.
    S. Besseghini, E. Villa, and A. Tuissi, NiTiHf Shape Memory Alloy: Effect of Aging and Thermal Cycling, Mater. Sci. Eng., 1999, A273–275, p 390–394Google Scholar
  9. 9.
    H. Hosoda et al., Martensite Transformation Temperatures and Mechanical Properties of Ternary NiTi Alloy with Offstoichiometric Compositions, Intermetallics, 1998, 6, p 291–301CrossRefGoogle Scholar
  10. 10.
    F.J. Gil and J.A. Planell, Thermal Efficiencies of NiTiCu Shape Memory Alloys, Thermochim. Acta, 1999, 327, p 151–154CrossRefGoogle Scholar
  11. 11.
    W. Siegert et al., Influence of Nb Content and Processing Conditions on Microstructure and Functional Properties of NiTiNb Shape-Memory Alloys, Mater. Sci. Forum, 2002, 394–395, p 361–364Google Scholar
  12. 12.
    V. Petzoldt, Formgedächtnistechnik Tiefbohren und Mikrofräsen von NiTi: Schriftenreihe ISF 2006Google Scholar
  13. 13.
    T.W. Duerig and K.N. Melton, Wide Hysteresis NiTiNb Alloys, The Martensitic Transformation in Science and Technology, E. Hornbogen and N. Jost, Ed., DGM Informationsgesellschaft mbH, Oberursel, 1989, p 191–198Google Scholar
  14. 14.
    C.S. Zhang et al., Effects of Deformation on the Transformation Hysteresis and Shape Memory Effect in a Ni47Ti44Nb9 Alloy, Scr. Metall. Mater., 1990, 24, p 1807–1812CrossRefGoogle Scholar
  15. 15.
    L.C. Zhao, T.W. Duerig, S. Justi, K.N. Melton, J.L. Proft, W. Yu, and C.M. Wayman, The Study of Niobium-Rich Precipitates in a NiTiNb Shape Memory Alloy, Scr. Metall., 1990, 24, p 221–225CrossRefGoogle Scholar
  16. 16.
    A. Bansiddhi and D.C. Dunand, Shape-Memory NiTi-Nb Foams, J. Mater. Res., 2009, 24, p 2107–2117CrossRefGoogle Scholar
  17. 17.
    T. Wu and M.H. Wu, NiTiNb Plugs for Sealing High Pressure Fuel Passages in Fuel Injector Applications, in Proceedings of International Conference on Shape Memory and Superelastic Technologies (SMST 2000), Pacific Grove, CA, USA, 2000, p 235–240Google Scholar
  18. 18.
    X. Zhao, X. Yan, Y. Yang, and H. Xu, Wide Hysteresis NiTi(Nb) Shape Memory Alloys with Low Nb Content (4.5 at.%), Mater. Sci. Eng. A, 2006, 438–440, p 575–578Google Scholar
  19. 19.
    K.T. Oh, U.K. Joo, G.H. Park, C.J. Hwang, and K.N. Kim, Effect of Silver Addition on the Properties of Nickel-Titanium Alloys for Dental Application, J. Biomed. Mater. Res. B, 2006, 76, p 306–314Google Scholar
  20. 20.
    H. Enami, M. Hara, and H. Maeda, Effect of W Addition on the Martensitic Transformation and Shape Memory Behavior of the TiNi-Base Alloy, J. Phys. IV Fr., 1995, 5(C8), p 629–633Google Scholar
  21. 21.
    X.J. Yan, H. Gugel, S. Huth, and W. Theisen, Microstructures and Properties of Laser Cladding NiTi Alloy with W for Biomedical Applications, Mater. Lett., 2011, 65, p 2934–2936CrossRefGoogle Scholar
  22. 22.
    D.S. Grummon, J.A. Shaw, and J. Foltz, Fabrication of Cellular Shape Memory Alloy Materials by Reactive Eutectic Brazing Using Niobium, Mater. Sci. Eng. A, 2006, 438, p 1113–1118CrossRefGoogle Scholar
  23. 23.
    S.F. Hsieh, S.K. Wu, H.C. Lin, and C.H. Yang, Transformation Sequence and Second Phases in Ternary Ti-Ni-W Shape Memory Alloys with Less Than 2 at% W, J. Alloys Comp., 2005, 387, p 121–127CrossRefGoogle Scholar
  24. 24.
    C. Zamponi, M. Wuttig, and E. Quandt, Ni-Ti-Ag Shape Memory Thin Films, Scr. Mater., 2007, 56, p 1075–1077CrossRefGoogle Scholar
  25. 25.
    P.J.S. Buenconsejo, R. Zarnetta, and A. Ludwig, The Effects of Grain Size on the Phase Transformation Properties of Annealed (Ti/Ni/W) Shape Memory Alloy Multilayers, Scr. Mater., 2011, 64, p 1047–1050CrossRefGoogle Scholar
  26. 26.
    P.J.S. Buenconsejo, A. Siegel, A. Savan, S. Thienhaus, and A. Ludwig, Preparation of 24 Ternary Thin Film Materials Libraries on a Single Substrate on One Experiment for Irreversible High-Throughput Studies, ACS Combin. Sci., 2012, 14, p 25–30CrossRefGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
    L. Krone, J. Mentz, M. Bram, H.P. Buchkremer, D. Stöver, M. Wagner, G. Eggeler, D. Christ, S. Reese, D. Bogdanski, M. Köller, S.A. Esenwein, G. Muhr, O. Prymak, and M. Epple, The Potential of Powder Metallurgy for the Fabrication of Biomaterials on the Basis of Nickel-Titanium: A Case Study with a Staple Showing Shape Memory Behaviour, Adv. Eng. Mater., 2005, 7, p 613–619CrossRefGoogle Scholar
  32. 32.
    J. Mentz, J. Frenzel, M.F.X. Wagner, K. Neuking, G. Eggeler, H.P. Buchkremer, and D. Stöver, Powder Metallurgical Processing of NiTi Shape Memory Alloys with Elevated Transformation Temperatures, Mater. Sci. Eng. A, 2008, 491, p 270–278CrossRefGoogle Scholar
  33. 33.
    M. Bram, M. Bitzer, H.P. Buchkremer, and D. Stöver, Reproducibility Study of NiTi Parts Made by Metal Injection Moulding, J. Mater. Eng. Perf., 2012. doi: 10.1007/s11665-012-0264-6.
  34. 34.
    J. Mentz, M. Bram, H.P. Buchkremer, and D. Stöver, Improvement of Mechanical Properties of Powder Metallurgical NiTi Shape Memory Alloys, Adv. Eng. Mater., 2006, 8, p 247–252CrossRefGoogle Scholar
  35. 35.
    J. Mentz, L. Krone, M. Bram, H.P. Buchkremer, and D. Stöver, Influence of Heat Treatment on Properties of Hot Isostatic Pressed (HIP) NiTi, Int. Conference on Shape Memory and Superelastic Technologies, SMST, 3-7 October 2004, Baden–Baden, Germany, 2006, p 489–494Google Scholar
  36. 36.
    J. Mentz, M. Bram, H.P. Buchkremer, D. Stöver, Improvement of Mechanical Properties of Powder Metallurgical NiTi by Reduction of Impurity Phases, International Conference on Shape Memory and Superelastic Technologies SMST, 7-11 May 2006, B. Berg, M.R. Mitchell, J. Proft, Eds., Pacific Grove, CA, USA, 2008, p 399–408Google Scholar
  37. 37.
    J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, Ni4Ti3-Precipitation During Aging of NiTi Shape Memory Alloys and Its Influence on Martensitic Phase Transformations, Acta Mater., 2002, 50, p 4255–4274CrossRefGoogle Scholar
  38. 38.
    W. Tang, B. Sundmann, R. Sandström, and C. Quiu, New Modelling of the B2 Phase and its Associated Martensitic Transformation in the Ti-Ni System, Acta Mater., 1999, 47, p 3457–3468CrossRefGoogle Scholar
  39. 39.
    J. Di, L. Wen-xi, D. Zhr-zhong, H. Ming, and W. De-fa, Influence on Phase Composite and Mechanical Properties of Ni47Ti44Nb9 Alloy, Trans. Nonferrous Met. Soc. China, 2003, 13, p 917–921Google Scholar
  40. 40.
    W. Siegert, K. Neuking, M. Mertmann, and G. Eggeler, First Cycle Shape Memory Effect in the Ternary NiTiNb System, J. Phys. IV Fr., 2003, 112, p 739–742CrossRefGoogle Scholar
  41. 41.
    M. Piao, K. Otsuka, S. Miyazaki, and H. Horikawa, Mechanism of the As Temperature Increase by Pre-deformation in Thermoelastic Alloys, Mater. Trans. JIM, 1993, 10, p 919–929Google Scholar
  42. 42.
    A.P. Cysne Barbosa, M. Bram, H.P. Buchkremer, and D. Stöver, Fabrication of Titanium Implants with a Gradient in Porosity by 2-Component MIM, Powder Inject. Mould. Int. PIM, 2012, 6, p 69–73Google Scholar
  43. 43.
    H.A. Wriedt, The O-W (Oxygen-Tungsten) System, Bull. Alloy Phase Diagr., 1989, 10, p 368–384CrossRefGoogle Scholar
  44. 44.
    H. Okamoto, C-W (Carbon-Tungsten), J. Phase Equilib. Diffus., 2008, 29, p 543–544CrossRefGoogle Scholar
  45. 45.
    K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50, p 511–678CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • M. Bitzer
    • 1
  • M. Bram
    • 1
  • H. P. Buchkremer
    • 1
  • D. Stöver
    • 1
  1. 1.Institute for Energy and Climate Research (IEK-1: Materials synthesis and processing)Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations