Journal of Materials Engineering and Performance

, Volume 22, Issue 4, pp 1091–1107 | Cite as

Effect of Annealing Temperature in Al 1145 Alloy Sheets on Formability, Void Coalescence, and Texture Analysis

  • K. Velmanirajan
  • A. Syed Abu Thaheer
  • R. Narayanasamy
  • R. Madhavan
  • Satyam Suwas


This paper deals with a combined forming and fracture limit diagram and void coalescence analysis for the aluminum alloy Al 1145 alloy sheets of 1.8 mm thickness, annealed at four different temperatures, namely 200, 250, 300, and 350 °C. At different annealing temperatures these sheets were examined for their effects on microstructure, tensile properties, formability, void coalescence, and texture. Scanning electron microscope (SEM) images taken from the fractured surfaces were examined. The tensile properties and formability of sheet metals were correlated with fractography features and void analysis. The variation of formability parameters, normal anisotropy of sheet metals, and void coalescence parameters were compared with texture analysis.


anisotropy forming fractography plastic behavior texture 



True stress


True strain


True major strain


True minor strain


True thickness strain


True effective strain


True hydrostatic or mean strain


Plastic strain ratio (ratio of width to thickness strain)


Strain hardening index or exponent value


Strength coefficient value


Average plastic strain ratio or normal anisotropy = (R 0 + R 90 + 2R 45)/4


Planar anisotropy


Average strain hardening index = (n 0 + n 90 + 2n 45)/4


Average strength coefficient = (K 0 + K 90 + 2K 45)/4


Rolling direction


Normal direction


Strain condition of tension-tension region


Plane strain condition


Strain condition of tension-compression region


Void area fraction


Length to width ratio of void


Triaxiality factor


Mohr’s circle Shear strain developed because of ε1 and ε2 ((ε1 − ε2)/2)


Mohr’s circle Shear strain developed because of ε2 and ε3 ((ε2 − ε3)/2)


Mohr’s circle Shear strain developed because of ε1 and ε3 ((ε1 − ε3)/2)


Relative spacing of the ligaments between two consecutive voids


A parameter on the void analysis (ratio of the δd to the radius of the void)


Orientation distribution function


Scanning electron microscopy


Representative material area (i.e., the area chosen in the SEM image)



The authors would like to thank Dr. Ganesh Sundararaman, Professor, IIT Madras and Dr. Indradev Samajdar, Professor, IIT Mumbai for their encouragement and support and National Facility of Texture and OIM, IIT Mumbai (Supported by DST (IRPHA)).


  1. 1.
    Z.P. Xing, S.B. Kang, and H.W. Kim, Softening Behavior of 8011 Alloy Produced by Accumulative Roll Bonding Process, Scripta Mater., 2001, 45, p 597–604CrossRefGoogle Scholar
  2. 2.
    H. Takuda, N. Yamazaki, N. Hatta, and S. Kikuchi, Influence of Cold-Rolling and Annealing Conditions on Formability of Aluminium Alloy Sheet, J. Mater. Sci., 1995, 30, p 957–963CrossRefGoogle Scholar
  3. 3.
    D. Ravi Kumar and K. Swaminathan, Formability of Two Aluminium Alloys, Mater. Sci. Technol., 1999, 15, p 1241–1252Google Scholar
  4. 4.
    E. Batraktar, N. Isac, and G. Arnold, An Experimental Study on the Forming Parameters of Deep-Drawable Steel Sheets in Automotive Industry, J. Mater. Process. Technol., 2005, 162–163, p 471–476CrossRefGoogle Scholar
  5. 5.
    V. Karthik, R.J. Comstock, Jr., D.L. Hershberger, and R.H. Wagoner, Variability of Sheet Formability and Formability Testing, J. Mater. Process. Technol., 2002, 121, p 350–362CrossRefGoogle Scholar
  6. 6.
    H.B. Campos, M.C. Butuc, J.J. Gracio, J.E. Rocha, and J.M.F. Duarte, Theoretical and Experimental Determination of the Forming Limit Diagram for the AISI, 304 Stainless Steel, J. Mater. Process. Technol., 2006, 179, p 56–60CrossRefGoogle Scholar
  7. 7.
    M. Aghaie-Khafri, Formability of AA8011 Aluminum Alloy Sheet in Homogenized and Unhomogenized Conditions, J. Mater. Sci., 2004, 39, p 6467–6472CrossRefGoogle Scholar
  8. 8.
    Y.-M. Huang, Y.-W. Tsai, and C.-L. Li, Analysis of Forming Limits in Metal Forming Processes, J. Mater. Process. Technol., 2008, 201, p 385–389CrossRefGoogle Scholar
  9. 9.
    O. Kristensson, Numerically Produced Forming Limit Diagrams for Metal Sheets with Voids Considering Micromechanical Effects, Eur. J. Mech. A, 2006, 25, p 13–23CrossRefGoogle Scholar
  10. 10.
    F. Ozturk and D. Lee, Analysis of Forming Limits Using Ductile Fracture Criteria, J. Mater. Process. Technol., 2004, 147, p 397–404CrossRefGoogle Scholar
  11. 11.
    Z. Yu, Z. Lin, and Y. Zhao, Evaluation of Fracture Limit in Automotive Aluminium Alloy Sheet Forming, Mater. Des., 2007, 28, p 203–207CrossRefGoogle Scholar
  12. 12.
    V. Tvergaard, Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions, Int. J. Fract., 1981, 17, p 389–407CrossRefGoogle Scholar
  13. 13.
    A. Needleman and V. Tvergaard, An Analysis of Ductile Rupture Modes at a Crack Tip, J. Mech. Phys. Solids, 1987, 35, p 151–183CrossRefGoogle Scholar
  14. 14.
    M. Gologanu, J.B. Leblond, and J. Devaux, Recent Extensions of Gurson’s Models for Porous Ductile Metals, Continuum Micromechanics, P. Suquet, Ed., Springer-Verlag, Berlin, 1995, Google Scholar
  15. 15.
    A.A. Benzerga, J. Bessson, and A. Pianeau, Coalescence-Controlled Anisotropic Ductile Fracture, J. Eng. Mater. Technol., 1999, 121, p 221–229CrossRefGoogle Scholar
  16. 16.
    X. Gao and J. Kim, Modelling of Ductile Fracture: Significance of Void Coalescence, Int. J. Solids Struct., 2006, 43, p 6277–6293CrossRefGoogle Scholar
  17. 17.
    R. Narayanasamy and C. Sathiya Narayanan, Experimental Analysis and Evaluation of Forming Limit Diagram for Interstitial Free Steels, Mater. Des., 2007, 28(5), p 1490–1512CrossRefGoogle Scholar
  18. 18.
    J. Kim, X. Gao, and T.S. Srivatsan, Modelling of Crack Growth in Ductile Solids: A Three-Dimensional Analysis, Int. J. Solids Struct., 2003, 40, p 7357–7374CrossRefGoogle Scholar
  19. 19.
    H.-S. Son, Y.-S. Kim, K.-H. Na, and S.-M. Hwang, Effect of Void Shape and Its Growth on Forming Limits for Anisotropic Sheets Containing Non-spherical Voids, ASME Int. J. A, 2004, 47, p 512–520Google Scholar
  20. 20.
    A.R. Ragab, Prediction of Fracture Limit Curves in Sheet Metals Uses a Void Growth and Coalescence Model, J. Mater. Process. Technol., 2008, 199, p 206–213CrossRefGoogle Scholar
  21. 21.
    J.-H. Ryu and D.N. Lee, The Effect of Precipitation on the Evolution of Recrystallization Texture in AA 8011 Aluminium Alloy Sheet, Mater. Sci. Eng., A, 2002, 336, p 225–232CrossRefGoogle Scholar
  22. 22.
    M. Jie, C.H. Cheng, L.C. Chan, and C.L. Chow, Forming Limit Diagrams of Strain-Rate-Dependent Sheet Metals, Int. J. Mech. Sci., 2009, 51, p 269–275CrossRefGoogle Scholar
  23. 23.
    R. Ponalagusamy, R. Narayanasamy, and K.R. Subramanian, Prediction of Limit Strains in Sheet Metals by Using New Generalized Yield Criteria, Mater. Des., 2007, 28, p 913–920CrossRefGoogle Scholar
  24. 24.
    P.H. Matin, L.M. Smith, and S. Petrusevski, A Method for Stress Space Forming Limit Diagram Construction for Aluminium Alloys, J. Mater. Process. Technol., 2006, 174, p 258–265CrossRefGoogle Scholar
  25. 25.
    K. Hariharan and C. Balaji, Material Optimization: A Case Study Using Sheet Metal-Forming Analysis, J. Mater. Process. Technol., 2009, 209, p 324–331CrossRefGoogle Scholar
  26. 26.
    K. Yoshida, T. Kuwabara, and M. Kuroda, Path-Dependence of the Forming Limit Stresses in a Sheet Metal, Int. J. Plast., 2007, 23, p 361–384CrossRefGoogle Scholar
  27. 27.
    H. Aretzm, O.S. Hopperstad, and O.-G. Lademo, Yield Function Calibration for Orthotropic Sheet Metals Based on Uniaxial and Plane Strain Tensile Tests, J. Mater. Process. Technol., 2007, 186, p 221–235CrossRefGoogle Scholar
  28. 28.
    W.C. Liu and J.G. Morris, Effect of Pre-treatment on Recrystallization and Recrystallization Textures of Cold Rolled CC AA 5182 Aluminum Alloy, Mater. Sci. Eng., A, 2003, 363, p 253–262CrossRefGoogle Scholar
  29. 29.
    N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of Aluminium Alloys at Elevated Temperatures—Part I: Material Characterization, Int. J. Plast., 2006, 22, p 314–341CrossRefGoogle Scholar
  30. 30.
    Z.-J. Wang, Y. Li, J.-G. Liu, and Y.-H. Zhang, Evaluation of Forming Limit in Viscous Pressure Forming of Automotive Aluminium Alloy 6k21-T4 Sheet, Trans. Nonferrous Met. Soc. China, 2007, 17, p 1169–1174CrossRefGoogle Scholar
  31. 31.
    D.W.A. Rees, A Tensor Function for the R Value of Sheet Metal, Appl. Math. Modelling, 1997, 21, p 579–590CrossRefGoogle Scholar
  32. 32.
    A.K. Gupta and D. Ravi Kumar, Formability of Galvanized Interstitial-Free Steel Sheets, J. Mater. Process. Technol., 2006, 172, p 225–237CrossRefGoogle Scholar
  33. 33.
    R. Narayanasamy and P. Padmanabhan, Modeling of Springback on Air Bending Process of Interstitial Free Steel Sheet Using Multiple Regression Analysis, Int. J. Interact. Des. Manuf., 2009, 3, p 25–33CrossRefGoogle Scholar
  34. 34.
    R. Narayanasamy, M. Ravi Chandran, C. Sathiya Narayanan, N.L. Parthasarathi, and R. Ravindran, Effect of Annealing Temperature on Void Coalescence in 5086 Aluminium Alloy Formed Under Different Stress Conditions, Int. J. Mech. Mater. Des., 2006, 3, p 293–307CrossRefGoogle Scholar
  35. 35.
    R. Narayanasamy, M. Ravi Chandran, and N.L. Parthasarathi, Effect of Annealing Temperature on Formability of Aluminium Grade 19000, Mater. Des., 2008, 29, p 1633–1653CrossRefGoogle Scholar
  36. 36.
    R. Ravindran, K. Manonmani, and R. Narayanasamy, An Analysis of Void Coalescence in Al 5052 Alloy Sheets Annealed at Different Temperature Formed Under Different Stress Conditions, Mater. Sci. Eng., A, 2009, 507, p 252–267CrossRefGoogle Scholar
  37. 37.
    R. Narayanasamy, R. Ravindran, K. Manonmani, and J. Satheesh, A Crystallographic Texture Perspective Formability Investigation of Aluminium 5052 Alloy Sheets at Various Annealing Temperatures, Mater. Des., 2009, 30, p 1804–1817CrossRefGoogle Scholar
  38. 38.
    R. Ravindran, K. Manonmani, and R. Narayanasmay, An Analysis of Wrinkling Limit Diagrams of Aluminum Alloy 5005 Annealed at Different Temperatures, Int. J. Mater. Form., 2010, 3(2), p 103–115CrossRefGoogle Scholar
  39. 39.
    O. Engler and K. Lucke, Mechanisms of Recrystallization Texture Formation in Aluminium Alloys, Scripta Metall. Mater., 1992, 27, p 1527CrossRefGoogle Scholar
  40. 40.
    Y. Zhou and K.W. Neale, Predictions of Forming Limit Diagrams Using a Rate-Sensitive Crystal Plasticity Model, Int. J. Mech. Sci., 1995, 37, p 1CrossRefGoogle Scholar
  41. 41.
    P.D. Wu, S.R. Mac-Even, D.J. Lloyd, and K.W. Neale, Effect of Cube Texture on Sheet Metal Formability, Mater. Sci. Eng., A, 2004, 364, p 182–187CrossRefGoogle Scholar
  42. 42.
    M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, and A.D. Rollett, Cube Texture in Hot-Rolled Aluminum Alloy 1050 (AA1050)—Nucleation and Growth Behavior, Acta Mater., 2008, 56(13), p 3098–3108CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • K. Velmanirajan
    • 1
  • A. Syed Abu Thaheer
    • 2
  • R. Narayanasamy
    • 3
  • R. Madhavan
    • 4
  • Satyam Suwas
    • 4
  1. 1.Department of Mechanical EngineeringVetriVinayaga College of Engineering and TechnologyTiruchirappalliIndia
  2. 2.Department of Mechanical EngineeringPET Engineering CollegeTirunelveliIndia
  3. 3.Department of Production EngineeringNational Institute of TechnologyTiruchirappalliIndia
  4. 4.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations