Advertisement

Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing

  • Guillermo Peris-Fajarnés
  • Beatriz Defez
  • Ricardo SerranoEmail author
  • Oscar E. Ruiz
Article
  • 189 Downloads

Abstract

Finding the geometry and properties of a ceramic tile after its firing using simulations, is relevant because several defects can occur and the tile can be rejected if the conditions of the firing are inadequate for the geometry and materials of the tile. Previous works present limitations because they do not use a model characteristic of ceramics at high temperatures and they oversimplify the simulations. As a response to such shortcomings, this article presents a simulation with a three-dimensional Norton’s model, which is characteristic of ceramics at high temperatures. The results of our simulated experiments show advantages with respect to the identification of the mechanisms that contribute to the final shape of the body. Our work is able to divide the history of temperatures in stages where the evolution of the thermal, elastic, and creep deformations is simplified and meaningful. That is achieved because our work found that curvature is the most descriptive parameter of the simulation. Future work is to be realized in the creation of a model that takes into account that the shrinkage is dependent on the history of temperatures.

Keywords

failure analysis heat treating modeling processes 

Nomenclature

\( H(S,p) \)

Mean curvature of a surface S at a point p

\( H_{\text{upp}} \)

Set of discrete mean curvatures at the nodes of the upper face of the ceramic tile

\( H_{\text{low}} \)

Set of discrete mean curvatures at the nodes of the lower face of the ceramic tile

\( \upvarepsilon_{\text{th}} \)

Set of thermal strains in one direction. Von Misses thermal strains are not defined

\( V\upvarepsilon_{\text{el}} \)

Set of Von Mises elastic strains

\( V\upvarepsilon_{\text{cr}} \)

Set of Von Mises creep strains

\( V\upsigma \)

Set of Von Mises stresses

\( \overline{M} \)

Average of set M. The set can be: \( H_{\text{low}} , H_{\text{upp}} , \upvarepsilon_{\text{th}} , V\upvarepsilon_{\text{cr}} , V\upvarepsilon_{\text{el}} , \) or \( V\upsigma \)

\( {\text{std}}. {\text{dev}}. M \)

Standard deviation of set M

\( { \max }\left( M \right) \)

Maximum absolute value of set M

\( \upsigma_{1} , \upsigma_{2} ,\upsigma_{3} \)

Set of first principal, second principal, and third principal stresses, respectively

References

  1. 1.
    ISO. 10545-2:1995, “Ceramic Tiles—Part 2: Determination of Dimensions and Surface Quality,” International Standard Confirmed, International Organization for Standardization, Geneva, Switzerland, 31 Dec 2005Google Scholar
  2. 2.
    M. Botsch and M. Pauly. Course 23: Geometric Modeling Based on Polygonal Meshes, ACM SIGGRAPH 2007 Courses, 2007Google Scholar
  3. 3.
    E.A. Olevsky and V. Tikare, Combined Macro-Meso Scale Modeling of Sintering. Part I: Continuum Approach, Recent Developments in Computer Modeling of Powder Metallurgy Processes, A. Zavaliangos and A. Laptev, Ed., IOS Press, Amsterdam, The Netherlands, 2001, p 85Google Scholar
  4. 4.
    V. Tikare, E.A. Olevsky, and M.V. Braginsky, Combined Macro-Meso Scale Modeling of Sintering. Part II, Mesoscale Simulations, Recent Developments in Computer Modeling of Powder Metallurgy Processes, A. Zavaliangos and A. Laptev, Ed., IOS Press, Amsterdam, The Netherlands, 2001, p 94Google Scholar
  5. 5.
    K. Shinagawa, Finite Element Simulation of Sintering Process: Microscopic Modelling of Powder Compacts and Constitutive Equation for Sintering, JSME Int J., Ser. A, 1996, 39(4), p 565–572Google Scholar
  6. 6.
    H. Riedel and T. Kraft, Numerical Simulation of Solid State Sintering: Model and Application, J. Eur. Ceram. Soc., 2004, 24, p 345–361CrossRefGoogle Scholar
  7. 7.
    H. Riedel and B. Blug, A Comprehensive Model for Solid State Sintering and Its Application to Silicon Carbide, Solid Mech. Appl., 2001, 84, p 49–70CrossRefGoogle Scholar
  8. 8.
    J.A. Yeomans, M. Barriere, P. Blanchart, S. Kiani, and J. Pan, Finite Element Analysis of Sintering Deformation Using Densification Data Instead of a Constitutive Law, J. Eur. Ceram. Soc., 2007, 27, p 2377–2383CrossRefGoogle Scholar
  9. 9.
    H. Su and D.L. Johnsonn, Master Sintering Curve: A Practical Approach to Sintering, J. Am. Ceram. Soc., 1996, 79(12), p 3211–3217CrossRefGoogle Scholar
  10. 10.
    H. Camacho, M.E. Fuentes, L. Fuentes, A. Garcia, and A. Perez, Stress Distribution Evolution in a Ceramic Body During Firing. Part 1. Problem Statement, Bol. Soc. Esp. Ceram., 2003, 42, p 283–288CrossRefGoogle Scholar
  11. 11.
    H. Camacho, M.E. Fuentes, L. Fuentes, A. Garcia, and A. Perez, Stress Distribution Evolution in a Ceramic Body During Firing. Part 2. Profile Calculation, Bol. Soc. Esp. Ceram., 2003, 42, p 353–359CrossRefGoogle Scholar
  12. 12.
    V. Cantavella Soler, et al., “Simulación de la deformación de baldosas cerámicas durante la cocción,” PhD thesis, 1998Google Scholar
  13. 13.
    W.R. Cannon and T.G. Langdon, Review: Creep of Ceramics. Part 1: Mechanical Characteristics, J. Mater. Sci., 1983, 18(1), p 1–50CrossRefGoogle Scholar
  14. 14.
    W.R. Cannon and T.G. Langdon, Review: Creep of Ceramics. Part 2: An Examination of Flow Mechanisms, J. Mater. Sci., 1988, 23, p 1–20CrossRefGoogle Scholar
  15. 15.
    M. Mitchell. Engauge Digitizer, 2009Google Scholar
  16. 16.
    R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009, ISBN 3-900051-07-0Google Scholar
  17. 17.
    G. Grothendieck, nls2: Non-linear Regression with Brute Force, R package version 0.1-2, 2007Google Scholar
  18. 18.
    J. Swanson, Ansys 11.0, Ansys, 2008Google Scholar
  19. 19.
    J.L. Amoros, E. Sanchez, V. Cantavella, and J.C. Jarque, Evolution of the Mechanical Strength of Industrially Dried Ceramic Tiles During Storage, J. Eur. Ceram. Soc., 2003, 23(11), p 1839–1845CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • Guillermo Peris-Fajarnés
    • 1
  • Beatriz Defez
    • 1
  • Ricardo Serrano
    • 2
    Email author
  • Oscar E. Ruiz
    • 2
  1. 1.Centro de Investigación en Tecnologías GráficasUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.CAD CAM CAE LaboratoryUniversidad EAFITMedellínColombia

Personalised recommendations