Journal of Materials Engineering and Performance

, Volume 22, Issue 4, pp 1035–1040 | Cite as

Development of UV-LED/TiO2 Device and Their Application for Photocatalytic Degradation of Methylene Blue



The determination of design and operational conditions of ultraviolet light-emitting diode (UV-LED)/TiO2 device is the major concern for the development and potential application of the photocatalytic process. In this article, development of UV-LED/TiO2 device and their applications for photocatalytic degradation of methylene blue (MB) are reported. The UV-LED with an output wavelength of 376 nm was applied as the UV light source for the photocatalytic decomposition of because of. The photocatalytic behavior of the photocatalytic decomposition of because of in aqueous solution operated by the UV-LED/TiO2 device was studied under various conditions including initial dye concentration, the mass of catalyst, light power, and pH value. The decomposition of because of in aqueous solution by TiO2 photocatalytic process with the UV-LED was found to be technically and actually feasible. Besides, our results show a promising technique for organic waste-water treatment by the UV-LED/TiO2 method.


methylene blue photocatalytic degradation TiO2 UV-LED 


  1. 1.
    A.A. Al-Taq, H.A. Nasr-El-Din, J.K. Beresky, K.M. Naimi, L. Sierra, and L. Eoff, SPE Reservoir, Eval. Eng., 2008, 11, p 882–891Google Scholar
  2. 2.
    C.X. Yan, C.Q. Wang, J.F. Yao, L.X. Zhang, and X.Q. Liu, Adsorption of Methylene Blue on Mesoporous Carbons Prepared Using Acid- and Alkaline-Treated Zeolite X as the Template, Colloids Surf. A Physicochem. Eng. Asp., 2009, 333, p 115–119CrossRefGoogle Scholar
  3. 3.
    V.E. Van, A. Zwijnenburg, W. van der Meer, and H. Temmink, Biological Black Water Treatment Combined with Membrane Separation, Water Res., 2008, 42, p 4334–4340CrossRefGoogle Scholar
  4. 4.
    W.H. Cheung, Y.S. Szeto, and G. McKay, Enhancing the Adsorption Capacities of Acid Dyes by Chitosan Nano Particles, Bioresour. Technol., 2009, 100, p 1143–1148CrossRefGoogle Scholar
  5. 5.
    J. Bohannon, Running Out of Water- and Time, Science, 2006, 313, p 1085–1087CrossRefGoogle Scholar
  6. 6.
    Z.J. Gu, T.Y. Zhai, B.F. Gao, X.H. Sheng, Y.B. Wang, H.B. Fu, Y. Ma, and J.N. Yao, Controllable Assembly of WO3 Nanorods/Nanowires into Hierarchical Nanostructures, J. Phys. Chem. B, 2007, 110, p 23829–23836CrossRefGoogle Scholar
  7. 7.
    K. Osathaphan, B. Chucherdwatanasak, P. Rachdawong, and V.K. Sharma, Photocatalytic Oxidation of Cyanide in Aqueous Titanium Dioxide Suspensions: Effect of Ethylenediaminetetraacetate, Sol. Energy, 2008, 82, p 1031–1036CrossRefGoogle Scholar
  8. 8.
    P. Dua, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, and G. Mul, The Effect of Surface OH-Population on the Photocatalytic Activity of Rare Earth-Doped P25-TiO2 in Methylene Blue Degradation, J. Catal., 2008, 260, p 75–80CrossRefGoogle Scholar
  9. 9.
    Y.P. Yuan, X.L. Zhang, L.F. Liu, X.J. Jiang, J. Lv, Z.S. Li, and Z.G. Zou, Synthesis and Photocatalytic Characterization of a New Photocatalyst BaZrO3, Int. J. Hydrog. Energy, 2008, 33, p 5941–5946CrossRefGoogle Scholar
  10. 10.
    T.K. Ghorai, D. Dhak, S. Dalai, and P. Pramanik, Preparation and Photocatalytic Activity of Nano-Sized Nickel Molybdate (NiMoO4) Doped Bismuth Titanate (Bi2Ti4O11) (NMBT) Composite, J. Alloy. Compd., 2008, 463, p 390–397CrossRefGoogle Scholar
  11. 11.
    N. Daneshvar, S. Aber, M.S.S. Dorraji, A.R. Khataee, and M.H. Rasoulifard, Photocatalytic Degradation of the Insecticide Diazinon in the Presence of Prepared Nanocrystalline ZnO Powders Under Irradiation of UV-C Light, Sep. Purif. Technol., 2007, 58, p 91–98CrossRefGoogle Scholar
  12. 12.
    X.B. Chen and S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev., 2007, 107, p 2891–2959CrossRefGoogle Scholar
  13. 13.
    J. Zhang, Q. Xu, Z.C. Feng, M.J. Li, and C. Li, Importance of the Relationship Between Surface Phases and Photocatalytic Activity of TiO2, Angew. Chem. Int. Ed., 2008, 47, p 1766–1769CrossRefGoogle Scholar
  14. 14.
    T.C. An, J.K. Liu, G.Y. Li, S.Q. Zhang, H.J. Zhao, X.Y. Zeng, G.Y. Sheng, and J.M. Fu, Structural and Photocatalytic Degradation Characteristics of Hydrothermally Treated Mesoporous TiO2, Appl. Catal. A Gen., 2008, 350, p 237–243CrossRefGoogle Scholar
  15. 15.
    Y.C. Lin and C.H. Lin, Catalytic and Photocatalytic Degradation of Ozone Via Utilization of Controllable Nano-Ag Modified on TiO2, Environ. Prog., 2008, 27, p 496–502CrossRefGoogle Scholar
  16. 16.
    F. Cesano, S. Bertarione, A. Damin, G. Agostini, S. Usseglio, J.G. Vitillo, C. Lamberti, G. Spoto, D. Scarano, and A. Zecchina, Oriented TiO2 Nanostructured Pillar Arrays: Synthesis and Characterization, Adv. Mater., 2008, 20, p 3342–3348CrossRefGoogle Scholar
  17. 17.
    T.K. Ghorai, S.K. Biswas, and P. Pramanik, Photooxidation of Different Organic Dyes (RB, MO, TB, and BG) Using Fe(III)-Doped TiO2 Nanophotocatalyst Prepared by Novel Chemical Method, Appl. Surf. Sci., 2008, 254, p 7498–7504CrossRefGoogle Scholar
  18. 18.
    R. Trejo-Tzab, J.J. Alvarado-Gil, P. Quintana, and T. López, Study of the Photoactivation of Titania Degussa P25 in Ethanol-Methanol Suspensions Using a Piezoelectric Sensor, J. Mol. Catal. A: Chem., 2008, 281, p 113–118CrossRefGoogle Scholar
  19. 19.
    M. Addamo, V. Augugliaro, M. Bellardita, A.D. Paola, V. Loddo, G. Palmisano, L. Palmisano, and S. Yurdakal, Environmentally Friendly Photocatalytic Oxidation of Aromatic Alcohol to Aldehyde in Aqueous Suspension of Brookite TiO2, Catal. Lett., 2008, 126, p 58–62CrossRefGoogle Scholar
  20. 20.
    T. Okame, K. Murakami, N. Saito, S. Kosaka, K. Horaguchi, and H. Murase, Potential Use of Mercury-Free Lamps in Plant Factories, Int. Con. Agr. Appl., 2001, 2002, p 73–76Google Scholar
  21. 21.
    A. Chakraborty, T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S.P. Denbaars, S. Nakamura, and U.K.M. Jpn, Milliwatt Power Blue InGaN/GaN Light-Emitting Diodes on Semipolar GaN Templates, J. Appl. Phys., 2005, 44, p L945–L947Google Scholar
  22. 22.
    H.G. Kim, T.V. Cuong, M.G. Na, H.K. Kim, H.Y. Kim, J.H. Ryu, and C.H. Hong, Improved GaN-Based LED Light Extraction Efficiencies Via Selective MOCVD Using Peripheral Microhole Arrays, IEEE Photonics Technol. Lett., 2008, 20, p 1284–1286CrossRefGoogle Scholar
  23. 23.
    H.Y. Gao, F.W. Yan, Y. Zhang, J.M. Lia, Y.P. Zeng, and G.H. Wang, Improvement of the Performance of GaN-Based LEDs Grown on Sapphire Substrates Patterned by Wet and ICP Etching, Solid-State Electron., 2008, 52, p 962–967CrossRefGoogle Scholar
  24. 24.
    R.J. Tayade, T.S. Natarajan, and H.C. Bajaj, Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes, Ind. Eng. Chem. Res, 2009, 48, p 10262–10267CrossRefGoogle Scholar
  25. 25.
    T.S. Natarajan, M. Thomas, K. Natarajan, H.C. Bajaj, and R.J. Tayade, Study on UV-LED/TiO2 Process for Degradation of Rhodamine B Dye, Chem. Eng. J., 2011, 169, p 126–134CrossRefGoogle Scholar
  26. 26.
    T.S. Natarajan, K. Natarajan, H.C. Bajaj, and R.J. Tayade, Energy Efficient UV-LED Source and TiO2 Nanotube Array-Based Reactor for Photocatalytic Application, Ind. Eng. Chem. Res, 2011, 50, p 7753–7762CrossRefGoogle Scholar
  27. 27.
    K. Natarajan, T.S. Natarajan, H.C. Bajaj, and R.J. Tayade, Photocatalytic Reactor Based on UV-LED/TiO2 Coated Quartz Tube for Degradation of Dyes, Chem. Eng. J., 2011, 178, p 40–49CrossRefGoogle Scholar
  28. 28.
    N.S. Maurya, A.K. Mittal, and P. Cornel, Evaluation of Adsorption Potential of Adsorbents: A Case of Uptake of Cationic Dyes, J. Environ. Biol., 2008, 29, p 31–36Google Scholar
  29. 29.
    J.J. Xu, Y.H. Ao, D.G. Fu, and C.W. Yuan, A Simple Route to Synthesize Highly Crystalline N-Doped TiO2 Particles Under Low Temperature, J. Cryst. Growth, 2008, 310, p 4319–4324CrossRefGoogle Scholar
  30. 30.
    T. Tasaki, T. Wada, K. Fujimoto, S. Kai, K. Ohe, T. Oshima, Y. Baba, and M. Kukizaki, Degradation of Methyl Orange Using Short-Wavelength UV Irradiation with Oxygen Microbubbles, J. Hazard. Mater., 2009, 162, p 1103–1110CrossRefGoogle Scholar
  31. 31.
    T.Y. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J.C. Zhao, and N. Serpone, Photooxidative N-Demethylation of Methylene Blue in Aqueous TiO2 Dispersions Under UV Irradiation, J. Photochem. Photobiol. A, 2001, 140, p 163–172CrossRefGoogle Scholar
  32. 32.
    W.Y. Wang and Y. Ku, Photocatalytic Degradation of Reactive Red 22 in Aqueous Solution by UV-LED Radiation, Water Res., 2006, 40, p 2249–2258CrossRefGoogle Scholar
  33. 33.
    A. Ma, Y. Wei, Z. Zhou, W. Xu, F. Ren, H. Ma, and J. Wang, Preparation Bi2S3-TiO2 Heterojunction/Polymer Fiber Composites and Its Photocatalytic Degradation of Methylene Blue Under Xe Lamp Irradiation, Polym. Degrad. Stabil., 2012, 97, p 125–131CrossRefGoogle Scholar
  34. 34.
    L. Xu, H. Xu, S. Wu, and X. Zhang, Synergy Effect Over Electrodeposited Submicron Cu2O Films in Photocatalytic Degradation of Methylene Blue, Appl. Surf. Sci., 2012, 258, p 4934–4938CrossRefGoogle Scholar
  35. 35.
    D. Zhao, G. Sheng, C. Chen, and X. Wang, Enhanced Photocatalytic Degradation of Methylene Blue Under Visible Irradiation on Graphene@TiO2 Dyade Structure, Appl. Catal. B Environ., 2012, 111-112, p 303–308CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationHuaibei Normal UniversityHuaibeiPeople’s Republic of China
  2. 2.Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations