Journal of Materials Engineering and Performance

, Volume 21, Issue 12, pp 2701–2712 | Cite as

Reproducibility Study of NiTi Parts Made by Metal Injection Molding



Powder metallurgy (P/M) is an attractive manufacturing process for net-shaped NiTi parts considering the limited machinability of NiTi alloys. Nevertheless, the industrial implementation of P/M processing for NiTi alloys is not trivial. To become competitive to manufacturing of NiTi alloys based on established ingot metallurgy, combination of fully pronounced shape memory behavior with sufficient mechanical properties is required. Successful use of P/M technology is strongly influenced by high affinity of NiTi alloys for uptake of oxygen and carbon, which leads to the formation of oxygen-containing Ti2Ni and TiC phases coupled with increase of Ni content in the matrix. In the case of Ni-rich NiTi alloys, this increase leads to a shift of phase transformation temperatures to lower values. Furthermore, precipitation of Ni4Ti3 during cooling from sintering temperature is difficult to avoid. Even if these precipitates might be used to decrease the Ni:Ti ratio of the matrix balancing oxygen and carbon uptake, significant loss of ductility arises, especially in the case of finely dispersed Ni4Ti3 precipitates. In the present work, each step of P/M manufacturing is discussed regarding its influence on the specific properties of NiTi alloys. The work is based on the application of prealloyed, gas atomized NiTi powders. Metal injection molding was used for net-shaped manufacturing of tensile samples, which enabled detailed study of sintering behavior combined with investigation of shape memory and mechanical properties depending on particle size, oxygen and carbon content as well as precipitation of Ni4Ti3 phase.


intermetallics nitinol nonferrous metals powder metallurgy shape memory 


  1. 1.
    M. Igharo and J.V. Wood, Compaction and Sintering Phenomena in Titanium-Nickel Shape Memory Alloys, Powder Metall., 1985, 28, p 131–139Google Scholar
  2. 2.
    H.C. Yi and J.J. Moore, The Combustion Synthesis of Ni-Ti Shape Memory Alloys, J. Mater., 1990, 42, p 31–35Google Scholar
  3. 3.
    M. Zhu, T.C. Li, J.T. Liu, and D.Z. Yang, Microstructure Characteristics of NiTi Shape Memory Alloy Obtained by Explosive Compact of Elemental Nickel and Titanium Powders, Acta Metall. Mater., 1991, 39, p 1481–1487CrossRefGoogle Scholar
  4. 4.
    J.C. Hey and A.P. Jardine, Shape Memory TiNi Synthesis from Elemental Powders, Mater. Sci. Eng. A, 1994, 188, p 291–300CrossRefGoogle Scholar
  5. 5.
    B.Y. Li, L.J. Rong, Y.Y. Li, and V.E. Gjunter, Synthesis of Porous Ni-Ti-Shape-Memory Alloys by Self-Propagating Synthesis: Reaction Mechanism and Anisotropy in Pore Structure, Acta Mater., 2000, 48, p 3895–3904CrossRefGoogle Scholar
  6. 6.
    B. Bertheville and J.E. Bidaux, Alternative Powder Metallurgical Processing of Ti-Rich NiTi Shape Memory Alloys, Scripta Mater., 2005, 52, p 507–512CrossRefGoogle Scholar
  7. 7.
    B.Y. Li, L.J. Rong, and Y.Y. Li, The Influence of Addition of TiH2 in Elemental Powder Sintering Porous Ni-Ti Alloys, Mater. Sci. Eng. A, 2000, 281, p 169–175CrossRefGoogle Scholar
  8. 8.
    D.C. Lagoudas and E.L. Vandygriff, Processing and Characterization of NiTi Porous SMA by Elevated Pressure Sintering, J. Intell. Mater. Syst. Struct., 2002, 13, p 837–850CrossRefGoogle Scholar
  9. 9.
    Y.P. Zhang, B. Yuan, M.Q. Zeng, C.Y. Chung, and X.P. Zhang, High Porosity and Large Pore Size Shape Memory Alloys Fabricated by Using Pore-Forming Agent (NH4HCO3) and Capsule-Free Hot Isostatic Pressing, J. Mater. Process. Technol., 2007, 192, p 434–442CrossRefGoogle Scholar
  10. 10.
    D.S. Li, Y.P. Zhang, G. Eggeler, and X.P. Zhang, High Porosity and High Strength Porous NiTi Shape Memory Alloy with Controllable Pore Characteristics, J. Alloys Compd. Lett., 2009, 470, p L1–L5CrossRefGoogle Scholar
  11. 11.
    C.L. Chu, C.Y. Chung, and P.H. Lin, Influence of Solution Treatment on the Compressive Properties of Porous NiTi Shape Memory Alloy of 53.4 vol.% Ni Fabricated by Combustion Synthesis, J. Mater. Sci. Lett., 2004, 39, p 4949–4951Google Scholar
  12. 12.
    M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer, and D. Stöver, Powder Metallurgical Fabrication Processes for NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2002, 337, p 254–263CrossRefGoogle Scholar
  13. 13.
    B. Yuan, C.Y. Chung, and M. Zhu, Microstructure and Martensitic Transformation Behavior of Porous NiTi Shape Memory Alloy Prepared by Hot Isostatic Pressing Processing, Mater. Sci. Eng., A, 2004, 382, p 181–187CrossRefGoogle Scholar
  14. 14.
    S.L. Zhu, X.J. Yang, F. Hu, S.H. Deng, and Z.D. Cui, Processing of Porous TiNi Shape Memory Alloy from Elemental Powders by Ar-Sintering, Mater. Lett., 2004, 58, p 2369–2373CrossRefGoogle Scholar
  15. 15.
    T.B. Massalski, H. Okamato, P.R. Subramanian, and L. Kacprzak, Ed., Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1996Google Scholar
  16. 16.
    M. Assad, P. Jarzem, M.A. Leroux, C. Coillard, A.V. Chernyshov, and S. Charette, Porous Titanium-Nickel for Intervertebral Fusion in a Sheep Model, Part 1: Histophometric and Radiological Analysis 1, J. Biomed. Mater. Res. B, 2003, B64, p 107–120CrossRefGoogle Scholar
  17. 17.
    S. Rhalmi, S. Charette, M. Assad, C. Coillard, and C.H. Rivard, The Spinal Cord Dura Mater Reaction to Nitinol and Titanium Alloy Particles: A 1-Year Study in Rabbits, Eur. Spine J., 2007, 16, p 145–154CrossRefGoogle Scholar
  18. 18.
    W.A. Johnson, J.A. Domingue, and S.A. Reichman, P/M Processing and Characterization of Controlled Transformation Temperature of NiTi, J. Phys. Colloq., 1982, C4(43), p 285–290Google Scholar
  19. 19.
    M. Igharo and J.V. Wood, Consolidation of Rapidly Solidified Ti-Ni Intermetallics, Powder Metall., 1986, 29, p 37–41Google Scholar
  20. 20.
    H. Kato, T. Koyari, S. Miura, K. Isonishi, and M. Tokinaze, Shape Memory Characteristics in Powder Metallurgy TiNi Alloys, Scripta Met. Mater., 1990, 24, p 2335–2340CrossRefGoogle Scholar
  21. 21.
    H. Kato, T. Koyari, M. Tokazane, and S. Miura, Stress Strain Behavior and Shape Memory Effect in Powder Metallurgy TiNi Alloys, Acta Metall. Mater., 1994, 42, p 1351–1358CrossRefGoogle Scholar
  22. 22.
    T.W. Duerig, Ni-Ti Shape Memory Alloys by Powder Metallurgical Methods, Proc. of First Int. Conf. on Shape Memory and Superelastic Technologies SMST94, A.R. Pelton, Ed., ASM The Materials Information Society, Pacific Grove, California, USA, 1994, p 31–42Google Scholar
  23. 23.
    D. Mari and D.C. Dunand, NiTi and NiTi-TiC Composites: Part 1: Transformation and Thermal Cycling Behavior, Met. Mater. Trans. A, 1995, 26, p 2823–2847CrossRefGoogle Scholar
  24. 24.
    K. Johansen, H. Voggenreiter, and G. Eggeler, On the Effect of TiC Particles on the Tensile Properties and on the Intrinsic Two Way Effect of NiTi Shape Memory Alloys Produced by Powder Metallurgy, Mater. Sci. Eng., A, 1999, 273–275, p 410–414Google Scholar
  25. 25.
    Y.Y. Zhao, T. Fung, L.P. Zhang, and F.L. Zhang, Lost Carbonate Sintering Process for Manufacturing Metal Foams, Scripta Mater., 2005, 52, p 295–298CrossRefGoogle Scholar
  26. 26.
    P. Imgrund, A. Rota, H. Schmidt, and G. Capretti, μ-MIM: Making the Most of NiTi, Met. Powder Rep., 2008, 63, p 21–24CrossRefGoogle Scholar
  27. 27.
    L. Krone, E. Schüller, M. Bram, O.A. Hamed, H.P. Buchkremer, and D. Stöver, Mechanical Behaviour of NiTi Parts Prepared by Powder Metallurgical Methods, Mater. Sci. Eng., A, 2004, 378, p 185–190CrossRefGoogle Scholar
  28. 28.
    L. Krone, Metal Injection Moulding (MIM) von NiTi Bauteilen mit Formgedächtnis-Eigenschaften, PhD Thesis, Ruhr-Universität Bochum, 2005Google Scholar
  29. 29.
    L. Krone, J. Mentz, M. Bram, H.P. Buchkremer, D. Stöver, M. Wagner, G. Eggeler, D. Christ, S. Reese, D. Bogdanski, M. Köller, S.A. Esenwein, G. Muhr, O. Prymak, and M. Epple, The Potential of Powder Metallurgy for the Fabrication of Biomaterials on the Basis of Nickel-Titanium: A Case Study with a Staple Showing Shape Memory Behaviour, Adv. Eng. Mater., 2005, 7, p 613–619CrossRefGoogle Scholar
  30. 30.
    J. Mentz, M. Bram, H.P. Buchkremer, and D. Stöver, Improvement of Mechanical Properties of Powder Metallurgical NiTi Shape Memory Alloys, Adv. Eng. Mater., 2006, 8, p 247–252CrossRefGoogle Scholar
  31. 31.
    J. Mentz, L. Krone, M. Bram, H.P. Buchkremer, and D. Stöver, Influence of Heat Treatment on Properties of Hot Isostatic Pressed (HIP) NiTi, Int. Conf. on Shape Memory and Superelastic Technologies, SMST, 3–7 October 2004, Baden-Baden, Germany, 2006, p 489–494Google Scholar
  32. 32.
    J. Mentz, M. Bram, H.P. Buchkremer, and D. Stöver, Influence of Heat Treatments on the Mechanical Properties of High-Quality Ni-Rich NiTi Produced by Powder Metallurgical Methods, Mater. Sci. Eng., A, 2008, 481–482, p 630–634Google Scholar
  33. 33.
    J. Mentz, J. Frenzel, M.F.X. Wagner, K. Neuking, G. Eggeler, H.P. Buchkremer, and D. Stöver, Powder Metallurgical Processing of NiTi Shape Memory Alloys with Elevated Transformation Temperatures, Mater. Sci. Eng., A, 2008, 491, p 270–278CrossRefGoogle Scholar
  34. 34.
    M. Köhl, T. Habijan, M. Bram, H.P. Buchkremer, D. Stöver, and M. Köller, Powder Metallurgical Near-Net-Shape Fabrication of Porous NiTi Shape Memory Alloys for Use as Long Term Implants by the Combination of the Metal Injection Moulding Process with the Space Holder Technique, Adv. Eng. Mater., 2009, 11, p 959–968Google Scholar
  35. 35.
    M. Köhl, M. Bram, A. Moser, T. Beck, H.P. Buchkremer, and D. Stöver, Characterization of Porous, Net-Shaped Ti and NiTi Alloys Regarding Their Damping and Energy Absorbing Capacity, Mater. Sci. Eng., A, 2011, 528, p 2452–2462Google Scholar
  36. 36.
    M. Bram, M. Köhl, H.P. Buchkremer, and D. Stöver, Mechanical Properties of Highly Porous NiTi Alloys, J. Mater. Eng. Perform., 2011, 20, p 522–528CrossRefGoogle Scholar
  37. 37.
    W. Tang, B. Sundmann, R. Sandström, and C. Quiu, New Modelling of the B2 Phase and its Associated Martensitic Transformation in the Ti-Ni System, Acta Mater., 1999, 47, p 3457–3468CrossRefGoogle Scholar
  38. 38.
    J. Khalil-Allafi, A. Dlouhy, and G. Eggeler, Ni4Ti3-Precipitation During Aging of NiTi Shape Memory Alloys and its Influence on Martensitic Phase Transformations, Acta Mater., 2002, 50, p 4255–4274CrossRefGoogle Scholar
  39. 39.
    J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.X.F. Wagner, and G. Eggeler, Influence of Ni on Martensitic Transformations in NiTi Shape Memory Alloys, Acta Mater., 2010, 58, p 3444–3458CrossRefGoogle Scholar
  40. 40.
    L. Gerking, Powder from Metal and Ceramic Melts by Laminar Gas Stream at Supersonic Speeds, Powder Met. Int., 1993, 25, p 59–65Google Scholar
  41. 41.
    W. Schatt, K.P. Wieters, and B. Kieback, Pulvermetallurgie—Technologie und Werkstoffe, Springer, Berlin, Heidelberg, New York, 2007Google Scholar
  42. 42.
    A. Bansiddhi and D.C. Dunand, Shape-Memory NiTi Foams Produced by Solid State Replication with NaF, Intermetallics, 2007, 15, p 1612–1622CrossRefGoogle Scholar
  43. 43.
    M. Nishida, C.M. Wayman, and T. Honma, Precipitation Process in Near-Equiatomic TiNi Shape Memory Alloys, Metall. Trans. A, 1986, 17, p 1505–1515CrossRefGoogle Scholar
  44. 44.
    G.F. Bastin and G.D. Rieck, Diffusion in the Titanium-Nickel System: I. Occurrence and Growth of Various Intermetallic Compounds, Metall. Trans., 1997, 5, p 1817–1826CrossRefGoogle Scholar
  45. 45.
    H. Mehrer, Diffusion in Binary Intermetallics, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, H. Mehrer, Ed., Springer, Berlin, Heidelberg, 2007, p 341–369 Google Scholar
  46. 46.
    Lexikon der Physik, CD-Rom, Spektrum Akademischer Verlag, Heidelberg, 2000Google Scholar
  47. 47.
    M. Köhl, Endkonturnahe Herstellung von biomedizinischen Implantaten mit definierter Porosität durch Metallpulverspritzgießen, PhD thesis, Ruhr-Universität Bochum, 2009Google Scholar
  48. 48.
    J.L. Murray and H.A. Wriedt, The O-Ti (Oxygen-Titanium) System, Bull. Alloy Phase Diagr., 1987, 8, p 148–165CrossRefGoogle Scholar
  49. 49.
    H. Okamoto, Comment on C-Ti (Carbon-Titanium), J. Phase Equilib., 1995, 16, p 522–523Google Scholar
  50. 50.
    E.R. Stover and J. Wulff, The Nickel-Titanium-Carbon System, Trans. AIME, 1959, 215, p 127–136Google Scholar
  51. 51.
    Y. Shugo, S. Hanada, and T. Honma, Effect of Oxygen Content on the Martensite Transformation and Determination of Defect Structure in TiNi alloys, Bull. Res. Inst. Miner. Dress. Metall., 1985, 41, p 23–34Google Scholar
  52. 52.
    T. Saburi, TiNi Shape Memory Alloys, Shape Memory Materials, K. Otsuka and C.M. Wayman, Ed., Cambridge University Press, Cambridge, 1998Google Scholar
  53. 53.
    T.W. Duerig, A.R. Pelton, and C. Trepanier, Nitinol, Chapter 9: Alloying and Composition, SMST e-Elastic Newsletter,, 2011
  54. 54.
    C.M. Jackson, H.J. Wagner, and R.J. Wasilesky, 55-Nitinol—The Alloy with a Memory: Its Physical Metallurgy, Properties and Applications, NASA publication SP-5110, Washington, DC, USA, 1972, p 42–59Google Scholar
  55. 55.
    P. Olier, F. Barcelo, J.L. Bechade, J.C. Brachet, E. Lefevre, and G. Guenin, Effects of Impurities Content (Oxygen, Carbon, Nitrogen) on Microstructure and Phase Transformation Temperatures of Near Equiatomic TiNi Shape Memory Alloys, J. Phys. IV, 1997, 7, p 143–148Google Scholar
  56. 56.
    K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50, p 511–678CrossRefGoogle Scholar
  57. 57.
    T. Tadaki, Y. Nakata, K. Shimizu, and K. Otsuka, Crystal Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at% Ni Shape Memory Alloy, Trans. Jpn. Inst. Met., 1986, 27, p 731–740Google Scholar
  58. 58.
    K. Otsuka and M.C. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1998Google Scholar
  59. 59.
    S. Miyazaki, Y. Kohiyama, K. Otsuka, and T.W. Duerig, Effects of Several Factors on the Ductility of the Ti-Ni Alloy, Mater. Sci. Forum, 1990, 56–58, p 765–770CrossRefGoogle Scholar
  60. 60.
    J. Mentz, M. Bram, H.P. Buchkremer, and D. Stöver, Improvement of Mechanical Properties of Powder Metallurgical NiTi by Reduction of Impurity Phases, Int. Conf. on Shape Memory and Superelastic Technologies SMST, 7–11 May 2006, B. Berg, M.R. Mitchell, J. Proft, Ed., Pacific Grove, California, USA, 2008, p 399–408Google Scholar
  61. 61.
    T. Saburi, M. Yoshida, and S. Nenno, Deformation Behavior of Shape Memory Ti-Ni Alloy Crystals, Scripta Metall., 1984, 18, p 363–366CrossRefGoogle Scholar
  62. 62.
    S. Miyazaki, S. Kimura, K. Otsuka, and Y. Suzuki, The Habit Plane and Transformation Strain with the Martensitic Transformation in TiNi Single Crystals, Scripta Metall., 1984, 18, p 883–890CrossRefGoogle Scholar
  63. 63.
    Y. Liu, Z. Xie, J. van Humbeeck, and L. Delaey, Asymmetry of Stress-Strain Curves Under Tension and Compression for NiTi Shape Memory Alloys, Acta Mater., 1998, 46, p 4325–4338CrossRefGoogle Scholar
  64. 64.
    D.E. Hodgson and J.W. Brown, Using Nitinol Alloys, Shape Memory Applications Inc., San Jose, CA, 2000Google Scholar
  65. 65.
    G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, Structural and Functional Fatigue of NiTi Shape Memory Alloys, Mater. Sci. Eng., A, 2004, 378, p 24–33CrossRefGoogle Scholar
  66. 66.
    M. Köhl, M. Bram, B. Coenen, H.P. Buchkremer, and D. Stöver, Herstellung von Halbzeugen aus NiTi-Legierungen, German Patent DE 10 2007 047 523, 2007Google Scholar
  67. 67.
    M. Bram, A. Ahmad-Khanlou, H.P. Buchkremer, and D. Stöver, Vacuum Plasma Spraying of NiTi Protection Layers, Mater. Lett., 2002, 57, p 647–651CrossRefGoogle Scholar
  68. 68.
    J. Stella, E. Schüller, C. Heßing, O.A. Hamed, M. Pohl, and D. Stöver, Cavitation Erosion of Plasma-Sprayed NiTi Coatings, Wear, 2006, 260, p 1020–1027CrossRefGoogle Scholar
  69. 69.
    G. Mauer, R. Vaßen, and D. Stöver, Controlling the Oxygen Contents in Vacuum Plasma Sprayed Metal Alloy Coatings, Surf. Coat. Technol., 2007, 201, p 4796–4799CrossRefGoogle Scholar
  70. 70.
    H. Meier, C. Haberland, J. Frenzel, and R. Zarnetta, Selective Laser Melting of NiTi Shape Memory Alloys, Innovative Developments in Design and Manufacturing—Advanced Research in Virtual and Rapid Prototyping, 2010, p 233–238Google Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • M. Bram
    • 1
  • M. Bitzer
    • 1
  • H. P. Buchkremer
    • 1
  • D. Stöver
    • 1
  1. 1.Forschungszentrum Jülich GmbHInstitute of Energy and Climate Research (IEK-1: Materials Synthesis and Processing)JülichGermany

Personalised recommendations