Processing of Carbon Fibers Reinforced Mg Matrix Composites Via Pre-infiltration with Al

  • A. Mertens
  • H.-M. Montrieux
  • J. Halleux
  • J. Lecomte-Beckers
  • F. Delannay
Article

Abstract

Mg-C composites offer a suitable alternative to Al alloys while allowing for a significant weight reduction, but their production can be impaired by the poor wettability of C substrates by Mg. In this study, a new “liquid” processing route has been investigated. By making use of the well-known effect of a pre-treatment of the C fibers with an aqueous solution of K2ZrF6 in favoring spontaneous wetting of C with Al, C yarns have been pre-impregnated with Al and the feasibility of further using them as reinforcements in Mg matrix composites has been assessed. More particularly, it has thus been shown that the, under the thermal conditions involved in the process, C fibers did not suffer damage due to chemical reaction with Al, and also that special care should be taken to control the surface condition of the pre-infiltrated yarns.

Keywords

interfacial reactions Mg/C composites squeeze casting wetting 

References

  1. 1.
    P. Asadi, G. Faraji, and M.K. Besharati, Producing of AZ91/SiC Composite by Friction Stir Processing (FSP), Int. J. Adv. Manuf. Technol., 2010, 51, p 247–260CrossRefGoogle Scholar
  2. 2.
    M.S. Yong and A.J. Clegg, Process Optimisation for a Squeeze Cast Magnesium Alloy Metal Matrix Composite, J. Mater. Process. Technol., 2005, 168, p 262–269CrossRefGoogle Scholar
  3. 3.
    H.Z. Ye and X.Y. Liu, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39, p 6153–6171CrossRefGoogle Scholar
  4. 4.
    F. Delannay, L. Froyen, and A. Deruyttere, Review—The Wetting of Solids by Molten Metals and Its Relation to the Preparation of Metal-Matrix Composites, J. Mater. Sci., 1987, 22, p 1–16CrossRefGoogle Scholar
  5. 5.
    F. Boland, C. Colin, and F. Delannay, Control of Interfacial Reactions During Liquid Phase Processing of Aluminum Matrix Composites Reinforced with INCONEL 601 Fibers, Metall. Mater. Trans., 1998, 29A, p 1727–1739CrossRefGoogle Scholar
  6. 6.
    J.C. Viala, P. Fortier, G. Claveyrolas, H. Vincent, and J. Bouix, Effect of Magnesium on the Composition, Microstructure and Mechanical Properties of Carbon Fibres, J. Mater. Sci., 1991, 26, p 4977–4984CrossRefGoogle Scholar
  7. 7.
    F. Wu, J. Zhu, K. Ibe, and T. Oikawa, Analysis of the Interface in Graphite/Magnesium Composites at the Nanometer Scale, Compos. Sci. Technol., 1998, 58, p 77–82CrossRefGoogle Scholar
  8. 8.
    J.C. Viala, G. Claveyrolas, F. Bosselet, and J. Bouix, The Chemical Behaviour of Carbon Fibres in Magnesium Base Mg-Al Alloys, J. Mater. Sci., 2000, 35, p 1813–1825CrossRefGoogle Scholar
  9. 9.
    A. Kleine, J. Hemptenmacher, H.J. Dudek, K.U. Kainer, and G. Krüger, Interface Formation in Carbon Fibre Reinforced Magnesium Alloys (AZ91), J. Mater. Sci. Lett., 1995, 14, p 358–360CrossRefGoogle Scholar
  10. 10.
    A. Feldhoff, E. Pippel, and J. Woltersdorf, TiN Coatings in C/Mg-Al Composites: Microstructure, Nanochemistry and Function, Philos. Mag. A, 2000, 80(3), p 659–672CrossRefGoogle Scholar
  11. 11.
    F. Reischer, E. Pippel, J. Woltersdorf, S. Stöckel, and G. Marx, Carbon Fibre-Reinforced Magnesium: Improvement of Bending Strength by Nanodesign of Boron Nitride Interlayers, Mater. Chem. Phys., 2007, 104, p 83–87CrossRefGoogle Scholar
  12. 12.
    J.P. Rocher, J.M. Quenisset, and R. Naslain, Wetting Improvement of Carbon or Silicon Carbide by Aluminium Alloys Based on a K2ZrF6 Surface Treatment: Application to Composite Material Casting, J. Mater. Sci., 1989, 24, p 2697–2703CrossRefGoogle Scholar
  13. 13.
    S. Schamm, R. Fedou, J.P. Rocher, J.M. Quenisset, and R. Naslain, The K2ZrF6 Wetting Process: Effect of Surface Chemistry on the Ability of a SiC-Fiber Preform to be Impregnated by Aluminum, Metall. Trans., 1991, 22A, p 2133–2139Google Scholar
  14. 14.
    C. Margueritat-Regenet, Elaboration et Caractérisation de Fils Composites C/Al—Infiltration Spontanée et Continue par Activation Chimique du Mouillage, PhD Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, 2002Google Scholar
  15. 15.
    C. Salmon, Elaboration et Caractérisation de Composites Pb/Carbone et Pb/Verre en vue de leur Utilisation Comme Anode d’électrolyse, Master Thesis, Université catholique de Louvain, Louvain-la-Neuve, 1995Google Scholar
  16. 16.
    L. Cizek, M. Greger, L. Pawlica, L.A. Dobrzanski, and T. Tanski, Study of Selected Properties of Magnesium Alloy AZ91 After Heat Treatment and Forming, J. Mater. Process. Technol., 2004, 157–158, p 466–471CrossRefGoogle Scholar
  17. 17.
    I.H. Khan, The Effect of Thermal Exposure on the Mechanical Properties of Aluminum-Graphite Composites, Metall. Trans., 1976, 7A, p 1281–1289Google Scholar
  18. 18.
    S. Ochiai and Y. Murakami, Tensile Strength of Composites with Brittle Reaction Zones at Interfaces, J. Mater. Sci., 1979, 14, p 831–840CrossRefGoogle Scholar
  19. 19.
    M. Russell-Stevens, R. Todd, and M. Papakyriacou, The Effect of Thermal Cycling on the Properties of a Carbon Fibre Reinforced Magnesium Composite, Mater. Sci. Eng. A, 2005, 397, p 249–256CrossRefGoogle Scholar
  20. 20.
    W.M. Zhong, G. L’Espérance, and M. Suéry, Interfacial Reactions in Al-Mg (5083)/Al2O3p Composites During Fabrication and Remelting, Metall. Mater. Trans., 1995, 26A, p 2625–2635CrossRefGoogle Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • A. Mertens
    • 1
    • 2
  • H.-M. Montrieux
    • 2
  • J. Halleux
    • 3
  • J. Lecomte-Beckers
    • 2
  • F. Delannay
    • 1
  1. 1.Institute of Mechanics, Materials and Civil EngineeringUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Metallic Materials Science Unit, A&M Department, Faculty of Applied ScienceUniversité de LiègeLiègeBelgium
  3. 3.Sirris Research CentreLiègeBelgium

Personalised recommendations