Complete and Incomplete Wetting of Ferrite Grain Boundaries by Austenite in the Low-Alloyed Ferritic Steel

  • B. B. StraumalEmail author
  • Y. O. Kucheev
  • L. I. Efron
  • A. L. Petelin
  • J. Dutta Majumdar
  • I. Manna


Low-carbon low-alloyed ferritic steels are the main material for the production of high-strength pipes for the transportation of oil and gas. The formation of brittle carbide network during the lifetime of a pipeline could be a reason for a catastrophic failure. Among other reasons, it can be controlled by the morphology of grain boundary (GB) carbides. The microstructure of a low-alloyed ferritic steel containing 0.09 at.% C and small amounts of Si, Mn, Nb, Cu, Al, Ni, and Cr was studied between 300 and 900 °C. The samples were annealed very long time (700 to 4000 h) in order to produce the equilibrium morphology of phases. The (α-Fe)/(α-Fe) GBs can be either completely or incompletely wetted (covered) by the γ-Fe (austenite) above the temperature of eutectoid transition. The portion of (α-Fe)/(α-Fe) GBs completely wetted by γ-Fe is around 90% and does not change much between 750 and 900 °C. The (α-Fe)/(α-Fe) GBs can be either completely or incompletely wetted (covered) by the Fe3C (cementite) below the temperature of eutectoid transition. The portion of (α-Fe)/(α-Fe) GBs completely wetted by Fe3C changes below 680 °C between 67 and 77%. The formation of the network of brittle cementite layers between ductile ferrite grains can explain the catastrophic failure of gas- and oil-pipelines after a certain lifetime.


failure of pipelines ferritic steels grain boundaries low-alloyed steels wetting 



The authors thank for the financial support the Programme of Creation and Development of the National University of Science and Technology “MISiS”, Russian Foundation of Basic Research (contracts 09-03-00784, 08-08-91302) and Department of Science and Technology of the Government of India (contract RUSP-873).


  1. 1.
    H. Nykyforchyn, E. Lunarska, O.T. Tsyrulnyk, K. Nikiforov, M.E. Genarro, and G. Gabetta, Environmentally Assisted “In-Bulk” Steel degradation of Long Term Service Gas Trunkline, Eng. Fail. Anal., 2010, 17, p 624–632CrossRefGoogle Scholar
  2. 2.
    YuP Surkov, V.G. Rybalko, D.V. Novgorodov, AYu Surkov, R.A. Sadrtdinov, and V.B. Geitsan, Estimating the Probability of the Propagation of Stress Corrosion Cracks in Compressor Station Pipelines, Russ. J. Nondestruct. Test., 2010, 46, p 458–467CrossRefGoogle Scholar
  3. 3.
    G.Y. Lee, D. Bae, and S. Park, Assessment of the Crack Growth Characteristics at the Low Corrosion Fatigue Limit of an A106GrB Steel Pipe Weld, Met. Mater. Int., 2010, 16, p 317–321CrossRefGoogle Scholar
  4. 4.
    S.G. Polyakov and A.A. Rybakov, The Main Mechanisms of Stress Corrosion Cracking in Natural Gas Trunk Lines, Strength Mater., 2009, 41, p 456–463CrossRefGoogle Scholar
  5. 5.
    J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi, Metallurgical Design of Ultra High-Strength Steels for Gas Pipelines, Int. J. Offshore Polar Eng., 2004, 14, p 2–10Google Scholar
  6. 6.
    J.W. Cahn, Critical Point Wetting, J. Chem. Phys., 1977, 66, p 3667–3676CrossRefGoogle Scholar
  7. 7.
    C. Ebner and W.F. Saam, New Phase-Transition Phenomena in Thin Argon Films, Phys. Rev. Lett., 1977, 38, p 1486–1489CrossRefGoogle Scholar
  8. 8.
    A. Passerone, N. Eustathopoulos, and P. Desré, Interfacial Tensions in Zn, Zn-Sn and Zn-Sn-Pb Systems, J. Less-Common Met., 1977, 52, p 37–49CrossRefGoogle Scholar
  9. 9.
    A. Passerone, R. Sangiorgi, and N. Eustathopoulos, Interfacial Tensions and Adsorption in the Ag–Pb System, Scripta Metall., 1982, 16, p 547–550CrossRefGoogle Scholar
  10. 10.
    N. Eustathopoulos, Energetics of Solid/Liquid Interfaces of Metals and Alloys, Int. Met. Rev., 1983, 28, p 189–210CrossRefGoogle Scholar
  11. 11.
    B.B. Straumal, Grain Boundary Phase Transitions, Nauka Publishers, Moscow, 2003 (in Russian)Google Scholar
  12. 12.
    B. Straumal, T. Muschik, W. Gust, and B. Predel, The Wetting Transition in High and Low Energy Grain Boundaries in the Cu(In) System, Acta Metall. Mater., 1992, 40, p 939–945CrossRefGoogle Scholar
  13. 13.
    B. Straumal, D. Molodov, and W. Gust, Wetting Transition on the Grain Boundaries in Al Contacting with Sn-Rich Melt, Interface Sci., 1995, 3, p 127–132CrossRefGoogle Scholar
  14. 14.
    B. Straumal, W. Gust, and T. Watanabe, Tie Lines of the Grain Boundary Wetting Phase Transition in the Zn-rich Part of the Zn–Sn Phase Diagram, Mater. Sci. Forum, 1999, 294–296, p 411–414CrossRefGoogle Scholar
  15. 15.
    B.B. Straumal, A.S. Gornakova, O.A. Kogtenkova, S.G. Protasova, V.G. Sursaeva, and B. Baretzky, Continuous and Discontinuous Grain Boundary Wetting in the Zn–Al System, Phys. Rev. B, 2008, 78, p 054202CrossRefGoogle Scholar
  16. 16.
    C.-H. Yeh, L.-S. Chang, and B.B. Straumal, Wetting Transition of Grain Boundaries in the Sn-Rich Part of the Sn–Bi Phase Diagram, J. Mater. Sci., 2011, 46, p 1557–1562CrossRefGoogle Scholar
  17. 17.
    C.-H. Yeh, L.-S. Chang, and B.B. Straumal, Wetting Transition of Grain Boundaries in Tin-Rich Indium-Based Alloys and Its Influence on Electrical Properties, Mater. Trans., 2010, 51, p 1677–1682CrossRefGoogle Scholar
  18. 18.
    A.S. Gornakova, B.B. Straumal, S. Tsurekawa, L.-S. Chang, and A.N. Nekrasov, Grain Boundary Wetting Phase Transformations in the Zn-Sn and Zn-In Systems, Rev. Adv. Mater. Sci., 2009, 21, p 18–26Google Scholar
  19. 19.
    G.A. López, E.J. Mittemeijer, and B.B. Straumal, Grain Boundary Wetting by a Solid Phase; Microstructural Development in a Zn–5 wt.% Al Alloy, Acta Mater., 2004, 52, p 4537–4545CrossRefGoogle Scholar
  20. 20.
    S.G. Protasova, O.A. Kogtenkova, B.B. Straumal, P. Zięba, and B. Baretzky, Inversed Solid-Phase Grain Boundary Wetting in the Al–Zn System, J. Mater. Sci., 2011, 46, p 4349–4353CrossRefGoogle Scholar
  21. 21.
    B.B. Straumal, B. Baretzky, O.A. Kogtenkova, A.B. Straumal, and A.S. Sidorenko, Wetting of Grain Boundaries in Al by the Solid Al3Mg2 Phase, J. Mater. Sci., 2010, 45, p 2057–2061CrossRefGoogle Scholar
  22. 22.
    B.B. Straumal, O.A. Kogtenkova, A.B. Straumal, YuO Kuchyeyev, and B. Baretzky, Contact Angles by the Solid-Phase Grain Boundary Wetting in the Co-Cu System, J. Mater. Sci., 2010, 45, p 4271–4275CrossRefGoogle Scholar
  23. 23.
    T.B. Massalski, Ed., Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990Google Scholar

Copyright information

© ASM International 2012

Authors and Affiliations

  • B. B. Straumal
    • 1
    • 2
    • 3
    Email author
  • Y. O. Kucheev
    • 1
    • 2
  • L. I. Efron
    • 4
  • A. L. Petelin
    • 2
  • J. Dutta Majumdar
    • 5
  • I. Manna
    • 6
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.National University of Science and Technology «MISiS»MoscowRussia
  3. 3.Institut für NanotechnologieKarlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany
  4. 4.United Metallurgical CompanyMoscowRussia
  5. 5.Metallurgical and Materials Engineering DepartmentIndian Institute of Technology, KharagpurKharagpurIndia
  6. 6.Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations