Structural Characterization and Corrosion Behavior of Stainless Steel Coated With Sol-Gel Titania

  • Daniela C. L. Vasconcelos
  • Eduardo H. M. Nunes
  • Antônio Claret S. Sabioni
  • João C. Diniz da Costa
  • Wander L. VasconcelosEmail author


Sol-gel titania films were prepared from hydrolysis and condensation of titanium (IV) isopropoxide. Diethanolamine was used as chelant agent in titania synthesis. 316L stainless steel substrates were dip-coated at three different withdrawal speeds (6, 30, and 60 mm/min) and heated up to 400 °C. Thermogravimetry and differential thermal analyses of the titania gel solution evinced a continuous mass loss for temperatures up to 800 °C. The transition of anatase to the rutile phase begins at 610-650 °C, being the rutile transformation completed at 900 °C. The thicknesses of the films were determined as a function of the heat treatment and withdrawal speed. It was observed that their thicknesses varied from 130 to 770 nm. Scanning electron microscopy images of the composites revealed the glass-like microstructure of the films. The obtained sol-gel films were also characterized by energy dispersive spectroscopy. The chemical evolution of the films as a function of the heating temperature was evaluated by Fourier transform infrared spectroscopy (specular reflectance method). After performing the adhesion tests, the adherence of the titania films to the stainless steel substrate was excellent, rated 5B according to ASTM 3359. The hardness of the ceramic films obtained was measured by the Knoop microindentation hardness test with a 10 g load. We observed that the titania film became harder than the steel substrate when it was heated above 400 °C. The corrosion rates of the titania/steel composites, determined from potentiodynamic curves, were two orders of magnitude lower than that of the bare stainless steel. The presence of the sol-gel titania film contributed to the increase of the corrosion potential in ca. 650 mV and the passivation potential in ca. 720 mV.


corrosion sol-gel steel structural properties titanium oxide 


  1. 1.
    S. Hogmark, S. Jacobson, and M. Larsson, Design and Evaluation of Tribological Coatings, Wear, 2000, 246(1–2), p 20–33CrossRefGoogle Scholar
  2. 2.
    C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of the Sol Gel Processing, Academic Press, San Diego, 1990Google Scholar
  3. 3.
    J.D. Mackenzie and E.P. Bescher, Physical Properties of Sol-Gel Coatings, J. Sol-Gel Sci. Technol., 2000, 19(1–3), p 23–29CrossRefGoogle Scholar
  4. 4.
    C.J. Brinker, A.J. Hurd, G.C. Frye, P.R. Schunk, and C.S. Ashley, Sol-Gel Thin-Film Formation, Chemical Processing of Advanced Materials, 1st ed., L.L. Hench and J.K. West, Ed., John Wiley & Sons Inc., New York, 1992, p 395 Google Scholar
  5. 5.
    L.M. Sheppard, Sol-Gel: Making Its Way Into The Mainstream, Photonics Spectra, 2000, 34(1), p 128–132Google Scholar
  6. 6.
    H. Ohsaki and Y. Kokubu, Global Market and Technology Trends on Coated Glass for Architectural, Automotive and Display Applications, Thin Solid Films, 1999, 351(1–2), p 1–7CrossRefGoogle Scholar
  7. 7.
    R.A. Caruso and M. Antonietti, Sol-Gel Nanocoating: An Approach to the Preparation of Structured Materials, Chem. Mater., 2001, 13(10), p 3272–3282CrossRefGoogle Scholar
  8. 8.
    K. Abe, Y. Sanada, and T. Morimoto, Anti-Reflective Coatings for CRTs by Sol-Gel Process, J. Sol-Gel. Sci. Technol., 2003, 26(1–3), p 709–713CrossRefGoogle Scholar
  9. 9.
    M.L. Zheludkevich, R. Serra, M.F. Montemor, K.A. Yasakau, I.M. Miranda Salvado, and M.G.S. Ferreira, Nanostructured Sol-Gel Coatings Doped with Cerium Nitrate as Pre-Treatments for AA2024-T3 Corrosion Protection Performance, Electrochim. Acta, 2005, 51(2), p 208–217CrossRefGoogle Scholar
  10. 10.
    A.N. Khramov, V.N. Balbyshev, L.S. Kasten, and R.A. Mantz, Sol-Gel Coatings with Phosphonate Functionalities for Surface Modification of Magnesium Alloys, Thin Solid Films, 2006, 514(1–2), p 174–181CrossRefGoogle Scholar
  11. 11.
    D.C.L. Vasconcelos, R.L. Oréfice, and W.L. Vasconcelos, Processing of Sol-Gel Alumina Coatings on Stainless Steel Substrates, Acta Microsc., 1999, 8(Supplement A), p 321–322Google Scholar
  12. 12.
    O. Sanctis, L. Gómez, N. Pellegri, and A. Durán, Behaviour in Hot Ammonia Atmosphere of SiO2-Coated Stainless Steels Produced by a Sol-Gel Procedure, Surf. Coat. Technol., 1995, 70(2–3), p 251–255CrossRefGoogle Scholar
  13. 13.
    F.T. Cheng, P. Shi, and H.C. Man, Anatase Coating on NiTi via a Low-Temperature Sol-Gel Route for Improving Corrosion Resistance, Scr. Mater., 2004, 51(11), p 1041–1045CrossRefGoogle Scholar
  14. 14.
    M.L. Zheludkevich, I.M. Salvado, and M.G.S. Ferreira, Sol-Gel Coatings for Corrosion Protection of Metals, J. Mater. Chem., 2005, 15(48), p 5099–5111CrossRefGoogle Scholar
  15. 15.
    K.Y. Chiu, M.H. Wong, F.T. Cheng, and H.C. Man, Characterization and Corrosion Studies of Titania-Coated NiTi Prepared by Sol-Gel Technique and Steam Crystallization, Appl. Surf. Sci., 2007, 253(16), p 6762–6768CrossRefGoogle Scholar
  16. 16.
    H. Hasannejad, M. Aliofkhazraei, A. Shanaghi, T. Shahrabi, and A.R. Sabour, Nanostructural and Electrochemical Characteristics of Cerium Oxide Thin Films Deposited on AA5083-H321 Aluminum Alloy Substrates by Dip Immersion and Sol-Gel Methods, Thin Solid Films, 2009, 517(17), p 4792–4799CrossRefGoogle Scholar
  17. 17.
    G. Grundmeier, W. Schmidt, and M. Stratmann, Corrosion Protection by Organic Coatings: Electrochemical Mechanism and Novel Methods of Investigation, Electrochim. Acta, 2000, 45(15–16), p 2515–2533CrossRefGoogle Scholar
  18. 18.
    S. de Souza, J.E.P. da Silva, S.I.C. de Torresi, M.L.A. Temperini, and R.M. Torresi, Polyaniline Based Acrylic Blends for Iron Corrosion Protection, Electrochem. Solid-State Lett., 2001, 4(8), p B27–B30CrossRefGoogle Scholar
  19. 19.
    H. Cao, R. Zhang, C.S. Sundar, J.-P. Yuan, Y. He, T.C. Sandreczki, Y.C. Jean, and B. Nielsen, Degradation of Polymer Coating Systems Studied by Positron Annihilation Spectroscopy: 1. UV Irradiation Effect, Macromolecules, 1998, 31, p 6627–6635CrossRefGoogle Scholar
  20. 20.
    A. Miszczyk and K. Darowicki, Effect of Environmental Temperature Variations on Protective Properties of Organic Coatings, Prog. Org. Coat., 2003, 46(1), p 49–54CrossRefGoogle Scholar
  21. 21.
    D.C.L. Vasconcelos, “Non-Oriented Grain Silicon Steel/Stainless Steel Composites Coated with Magnesia, Alumina, Silica and Titania Films Prepared by Sol-Gel,” PhD Thesis, Federal University of Minas Gerais, 2003 (in Portuguese)Google Scholar
  22. 22.
    K. Izumi, N. Minami, and Y. Uchida, Sol-Gel Derived Coatings on Steel Sheets, Key Eng. Mater., 1998, 150, p 77–87CrossRefGoogle Scholar
  23. 23.
    D.C.L. Vasconcelos, J.A.N. Carvalho, M. Mantel, and W.L. Vasconcelos, Corrosion Resistance of Stainless Steel Coated with Sol-Gel Silica, J. Non-Cryst. Solids, 2000, 273(1–3), p 135–139CrossRefGoogle Scholar
  24. 24.
    M. Atik, S.H. Messaddeq, F.P. Luna, and M.A. Aegerter, Zirconia Sol-Gel Coatings Deposited on 304 and 316L Stainless Steel for Chemical Protection in Acid Media, J. Mater. Sci. Lett., 1996, 15(23), p 2051–2054Google Scholar
  25. 25.
    Y. Takahashi and Y. Matsuoka, Dip-Coating of TiO2 Films Using a Sol Derived From Ti(O-I-PR)4-Diethanolamine-H2O-I-Proh System, J. Mater. Sci., 1988, 23(6), p 2259–2266CrossRefGoogle Scholar
  26. 26.
    “Standard Test Methods for Measuring Adhesion by Tape Test,” D3359, Annual Book of ASTM Standards, ASTM International, p 1–7Google Scholar
  27. 27.
    S. Musić, M. Gotić, M. Ivanda, S. Popović, A. Turković, R. Trojko, A. Sekulić, and K. Furić, Chemical and Microstructural Properties of TiO2 Synthesized by Sol-Gel Procedure, Mater. Sci. Eng. B, 1997, 47, p 33–40CrossRefGoogle Scholar
  28. 28.
    C. Suresh, V. Biju, P. Mukundan, and K.G.K. Warrier, Anatase to Rutile Transformation in Sol-Gel Titania by Modification of Precursor, Polyhedron, 1998, 17(18), p 3131–3135CrossRefGoogle Scholar
  29. 29.
    S.R. Kumar, C. Suresh, A.K. Vasudevan, N.R. Sujan, P. Mukundan, and K.G.K. Warrier, Phase Transformation in Sol-Gel Titania Containing Silica, Mater. Lett., 1999, 38(3), p 161–166CrossRefGoogle Scholar
  30. 30.
    T. Lopez, E. Sanchez, P. Bosch, Y. Meas, and R. Gomez, FTIR and UV-VIS (Diffuse Reflectance) Spectroscopic Characterization of TiO2 Sol-Gel, Mater. Chem. Phys., 1992, 32(2), p 141–152CrossRefGoogle Scholar
  31. 31.
    K. Chhor, J.F. Bocquet, and C. Pommier, Syntheses of Submicron TiO2 Powders in Vapor, Liquid and Supercritical Phases: A Comparative-Study, Mater. Chem. Phys., 1992, 32(3), p 249–254CrossRefGoogle Scholar
  32. 32.
    D.L. Wood, E.M. Rabinovich, D.W. Johnson, Jr., J.B. MacChesney, and E.M. Vogel, Preparation of High-Silica Glasses From Colloidal Gels. 3. Infrared Spectrophotometric Studies, J. Am. Ceram. Soc., 1983, 66(10), p 693–699CrossRefGoogle Scholar
  33. 33.
    M. Burgos and M. Langlet, The Sol-Gel Transformation of TIPT Coatings: A FTIR Study, Thin Solid Films, 1999, 349(1–2), p 19–23CrossRefGoogle Scholar
  34. 34.
    R. Urlaub, U. Posset, and R. Thull, FT-IR Spectroscopic Investigations on Sol-Gel-Derived Coatings from Acid-Modified Titanium Alkoxides, J. Non-Cryst. Solids, 2000, 265(3), p 276–284CrossRefGoogle Scholar
  35. 35.
    S. Doeuff, M. Henry, C. Sanchez, and J. Livage, Hydrolysis of Titanium Alkoxides: Modification of the Molecular Precursor by Acetic Acid, J. Non-Cryst. Solids, 1987, 89(1–2), p 206–216CrossRefGoogle Scholar
  36. 36.
    P.A. Venz, R.L. Frost, and J.T. Kloprogge, Chemical Properties of Modified Titania Hydrolysates, J. Non-Cryst. Solids, 2000, 276(1–3), p 95–112CrossRefGoogle Scholar
  37. 37.
    F.N. Castellano, J.M. Stipkala, L.A. Friedman, and G.L. Meyer, Spectroscopic and Excited-State Properties of Titanium-Dioxide Gels, Chem. Mater., 1994, 6, p 2123–2129CrossRefGoogle Scholar
  38. 38.
    G.F.V. Voort and G.L. Buehler, Microindentation Hardness Testing, U.S.A., 09/11/2000,
  39. 39.
    H.L. Wang, M.J. Chiang, and M.H. Hon, Determination of Thin Film Hardness for a Film/Substrate System, Ceram. Int., 2001, 27(4), p 385–389CrossRefGoogle Scholar
  40. 40.
    P.M. Sargent, Use of the Indentation Size Effect on Microhardness for Materials Characterization, Microindentation Techniques in Materials Science and Engineering, P.L. Blau and B.R. Lawn, Ed., ASTM Special Technical Publication, Philadelphia, 1985, p 160CrossRefGoogle Scholar
  41. 41.
    A.J. Sedriks, Corrosion of Stainless Steels, 2nd ed., Wiley-Interscience, New York, 1996, p 464Google Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • Daniela C. L. Vasconcelos
    • 1
  • Eduardo H. M. Nunes
    • 1
  • Antônio Claret S. Sabioni
    • 2
  • João C. Diniz da Costa
    • 3
  • Wander L. Vasconcelos
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials Engineering, Laboratory of Ceramic MaterialsFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of PhysicsFederal University of Ouro PretoOuro PretoBrazil
  3. 3.Films and Inorganic Membrane Laboratory, School of Chemical EngineeringThe University of Queensland, FIMLabBrisbaneAustralia

Personalised recommendations