Two-Level Weld-Material Homogenization for Efficient Computational Analysis of Welded Structure Blast-Survivability

  • M. Grujicic
  • G. Arakere
  • A. Hariharan
  • B. Pandurangan
Article

Abstract

The introduction of newer joining technologies like the so-called friction-stir welding (FSW) into automotive engineering entails the knowledge of the joint-material microstructure and properties. Since, the development of vehicles (including military vehicles capable of surviving blast and ballistic impacts) nowadays involves extensive use of the computational engineering analyses (CEA), robust high-fidelity material models are needed for the FSW joints. A two-level material-homogenization procedure is proposed and utilized in this study to help manage computational cost and computer storage requirements for such CEAs. The method utilizes experimental (microstructure, microhardness, tensile testing, and x-ray diffraction) data to construct: (a) the material model for each weld zone and (b) the material model for the entire weld. The procedure is validated by comparing its predictions with the predictions of more detailed but more costly computational analyses.

Keywords

blast-survivability computational engineering analysis friction-stir welding material-model development 

References

  1. 1.
    M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-stir Welding, J. Mater. Eng. Perform., 2010, 19(5), p 672–684CrossRefGoogle Scholar
  2. 2.
    M. Grujicic, G. Arakere, C-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution during Friction-stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2010, doi: 10.1007/s11665-010-9741-y
  3. 3.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083–H321, J. Mater. Eng. Perform, doi: 10.1007/s11665-010-9725-y, July 2010.
  4. 4.
    M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224(4), p 609–625CrossRefGoogle Scholar
  5. 5.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes. Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203 (1991)Google Scholar
  6. 6.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C-F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-effective Friction Stir Welding Process for use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2010, doi: 10.1007/s11665-010-9650-0
  7. 7.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf. (pending approval from sponsor for manuscript submission), January 2010.Google Scholar
  8. 8.
    W. Van Haver, B. de Meester, A. Geurten, and J. Defrancq, Innovative Joining of Critical Aluminium Structures with the Friction Stir Welding Technique—CASSTIR, Final Report, Belgian Science Policy (Programme to stimulate knowledge transfer in areas of strategic importance—TAP2), Brussels, 2010, 110.Google Scholar
  9. 9.
    M. Grujicic, G. Arakere, A. Hariharan, B. Pandurangan, C-.F. Yen, and B.A. Cheeseman, A Concurrent Design, Manufacturing and Testing Product Development Approach for Friction-stir Welded Vehicle Underbody Structures, J. Manuf. Eng. Perform. August, 2010 (submitted).Google Scholar
  10. 10.
    W. Mohr, APP09 Task 2.5 Mechanical Properties of FSW 2XXX and 5XXX Alloys, EWI Project No. 51972GTH, Edison Welding Institute, 2009.Google Scholar
  11. 11.
    J.W.L. Pang, T.M. Holden, and T.E. Mason, In-situ Generation of Intergranular Strains in an Al7050 Alloy, Acta Mater., 1998, 46(5), p 1503–1518CrossRefGoogle Scholar
  12. 12.
    M.R. Daymond, C.N. Tome, and M.A.M. Bourke, Measured and Predicted Intergranular Strains in Textured Austenitic Steel, Acta Mater., 2000, 48, p 553–564CrossRefGoogle Scholar
  13. 13.
    I.C. Noyan and J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation, Springer-Verlag, New York, 1987Google Scholar
  14. 14.
    M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction-Stir Welds, Acta Mater., 2003, 51, p 4791–4801CrossRefGoogle Scholar
  15. 15.
    G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983.Google Scholar
  16. 16.
    G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates and Temperatures, Eng. Fract. Mech., 1985, 21(1), p 31–48CrossRefGoogle Scholar
  17. 17.
    Autodyn Materials Library, Ansys/Autodyn 11.0, Ansys Inc. 2010.Google Scholar
  18. 18.
    Southwest Research Institute, work in progress, 2010.Google Scholar
  19. 19.
    A.H. Clausen, T. Borvik, O.S. Hopperstad, and A. Benallal, Flow and Fracture Characteristics of Aluminum Alloy AA5083–H116 as Function of Strain-rate, Temperature and Triaxiality, Mater. Sci. Eng. A, 2004, 364, p 260–272CrossRefGoogle Scholar
  20. 20.
    C-F. Yen, ARL, Aberdeen Proving Ground, MD, work in progress, October 2010.Google Scholar
  21. 21.
    ABAQUS 6.9, Theory Manual, Dassault Systemes, 2010.Google Scholar
  22. 22.
    K.J. Colligan, P.J. Konkol, J.J. Fisher, and J.R. Pickens, Friction Stir Welding Demonstrated for Combat Vehicle Construction, Weld. J., 2003, 82(3), p 34–40Google Scholar
  23. 23.
    HyperMesh 10.0, Theory Manual, Altair Engineering Inc., 2010.Google Scholar
  24. 24.
    E.L. Lee, H.C. Hornig, and J.W. Kury, Adiabatic Expansion of High Explosive Detonation Products, UCRL–50422, Lawrence Radiation Laboratory, University of California, California, 1968CrossRefGoogle Scholar
  25. 25.
    M. Grujicic, B. Pandurangan, and B.A. Cheeseman, The Effect of Degree of Saturation of Sand on Detonation Phenomena Associated with Shallow-buried and Ground-laid mines, Shock Vib., 2006, 13, p 41–62Google Scholar
  26. 26.
    M. Grujicic, B. Pandurangan, Y. Huang, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, Impulse Loading Resulting from Shallow Buried Explosives in Water-saturated Sand, J. Mater. Des. Appl., 2007, 221, p 21–35Google Scholar
  27. 27.
    M. Grujicic, B. Pandurangan, R. Qiao, B.A. Cheeseman, R.R. Skaggs, and R. Gupta, Parameterization of the Porous-Material Model for Sand with Different Levels of Water Saturation, Soil Dyn. Earthq. Eng., 2008, 28, p 20–35CrossRefGoogle Scholar
  28. 28.
    A.M. Bragov, A.K. Lomunov, I.V. Sergeichev, K. Tsembelis, and W.G. Proud, Determination of Physicomechanical Properties of Soft Soils from Medium to High Strain Rates, Int. J. Impact Eng., 2008, 35(9), p 967–976CrossRefGoogle Scholar
  29. 29.
    ANSYS/Autodyn-2D and 3D, Version 11, User Documentation, Ansys Inc., 2007.Google Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • M. Grujicic
    • 1
  • G. Arakere
    • 1
  • A. Hariharan
    • 1
  • B. Pandurangan
    • 1
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA

Personalised recommendations