Journal of Materials Engineering and Performance

, Volume 20, Issue 9, pp 1544–1553

Optical Film for LED with Triangular-Pyramidal Array Using Size-Reducible Embossing Method

  • C. F. Liu
  • C. T. Pan
  • K. H. Liu
  • Y. C. Chen
  • J. L. Chen
  • J. C. Huang


This study presents a modified hot-embossing process to fabricate micro-triangular-pyramidal array (MTPA). First, a tungsten (W) steel mold (as the first mold) is manufactured by precision machining including optical projection grinding, lapping, and polishing processes. The dimension of a triangular pyramid with acute angle of 85° on the W-steel mold is about 300 μm in width and 139 μm in height. The pitch between two triangular-pyramidal tips is about 170 μm. Then, only the portion of the tip area of the triangular-pyramidal patterns is transferred on bulk metallic glass (BMG, Mg58Cu31Y11) using this modified multi-step hot-embossing method to reduce the pattern size. With a position-adjustable mechanism, size-reduced concaved-shaped MTPA can be selectively formed, used as the secondary mold. In this way, not only can the size of triangular-pyramidal patterns on W-steel mold be reduced down on BMG, but also the tool arc between each triangular-pyramid on W-steel mold caused by machine tool can be eliminated. This is based on the fact that amorphous glass alloys contain no dislocation that can be responsible for yielding in crystalline materials. Thus, BMG is expected to be strong and hard enough to be used as a mold material. Then the secondary mold is used to emboss convex-shaped MTPA on PolymethylMethacrylate (PMMA) optical film. Experiments with different embossing times and embossing pressures are conducted and discussed. Large-sized triangular-pyramidal array on the W-steel mold has been successfully and selectively miniaturized on BMG, and then transferred on PMMA. Finally, this optical film of PMMA with MTPA is packaged on light-emitting diode (LED) to improve its lighting uniformity and luminance. In comparison with commercial 3M optical film (3M Vikuiti TBEF2-T-65i), the film with MTPA shows a good optical performance.


BMG hot embossing multi-step optical film size-reducible triangular-pyramidal 


  1. 1.
    B. Ezell, Making Micro-Lens Backlights Grow Up, Inf. Disp., 2001, 5, p 42–45Google Scholar
  2. 2.
    Z.D. Popovic, R.A. Sprague, and G.A.N. Connell, Technique for the Monolithic Fabrication of Micro-Lens Arrays, Appl. Opt., 1988, 27, p 1281–1284CrossRefGoogle Scholar
  3. 3.
    M.C. Hutley, Optical Techniques for the Generation of Micro-Lens Arrays, J. Mod. Opt., 1990, 37, p 253–265CrossRefGoogle Scholar
  4. 4.
    J.O. Choi, J.A. Morse, J.C. Corelli, J.P. Silverman, and H. Bakhru, Degradation of poly(methylmethacrylate) by Deep Ultraviolet, X-ray, Electron Beam, and Proton Beam Irradiations, J. Vac. Sci. Technol. B, 1988, 6, p 2286–2289CrossRefGoogle Scholar
  5. 5.
    N.F. Borrelli, D.L. Morse, R.H. Bellman, and W.L. Morgon, Photolytic Technique for Producing Micro-Lenses in Photosensitive Glass, Appl. Opt., 1985, 24, p 2520–2525CrossRefGoogle Scholar
  6. 6.
    H. Yang, C.-K. Chou, M.-K. Wei, and C.P. Lin, High Fill-Factor Micro-Lens Array Mold Insert Fabrication Using a Thermal Reflow Process, J. Micromech. Microeng., 2004, 14, p 1197–1204CrossRefGoogle Scholar
  7. 7.
    C.P. Lin, H. Yang, and C.K. Chou, Hexagonal Micro-Lens Array Modeling and Fabrication Using a Thermal Reflow Process, J. Micromech. Microeng., 2003, 13, p 775–781CrossRefGoogle Scholar
  8. 8.
    L. Kong, X. Yi, K. Lian, and S. Chen, Design and Optical Performance Research of Multi-Phase Diffractive Micro-Lens Arrays, J. Micromech. Microeng., 2004, 14, p 1135–1139CrossRefGoogle Scholar
  9. 9.
    S. Chen, X. Yi, and H. Ma, A Novel Method of Fabrication of Micro-Lens Arrays, Infrared Phys. Technol., 2003, 44, p 133–135CrossRefGoogle Scholar
  10. 10.
    M.T. Gale, M. Rossi, J. Pedersen, and H. Schutz, Fabrication of Continuous Relief Micro-Optical Elements by Direct Laser Writing in Photoresists, Opt. Eng., 1994, 22(11), p 3556–3566CrossRefGoogle Scholar
  11. 11.
    K. Zimmer, D. Hirsch, and F. Bigl, Excimer Laser Machining for the Fabrication of Analogous Microstructures, Appl. Surf. Sci., 1996, 96–98, p 425–429CrossRefGoogle Scholar
  12. 12.
    C.C. Chen, M.H. Li, C.Y. Chang, J.K. Sheu, G.C. Chi, W.T. Cheng, J.H. Yeh, and J.Y. Chang, GaN Diffractive Micro-Lenses Fabricated With Grayscale Mask, Opt. Commun., 2003, 215, p 75–78CrossRefGoogle Scholar
  13. 13.
    S.A. Takatsuki, T.Y. Nara, and S.O. Kyoto, Micro-Aspherical Lens and Fabrication Method Therefore and Optical Device, US Patent, 1992, 5,148,322Google Scholar
  14. 14.
    H. Yang, M.C. Chou, A. Yang, C.K. Mu, R.F. Shyu, Realization of Fabricating Micro-Lens Array In Mass Production, Proceeding of SPIE, Vol 3739, 1999, p 178–185Google Scholar
  15. 15.
    H. Yang, C.T. Pan, and M.C. Chou, Ultra-Fine Machining Tool/Molds by LIGA Technology, J. Micromech. Microeng., 2001, 11, p 94–99CrossRefGoogle Scholar
  16. 16.
    R. Danzebrink and M.A. Aegerter, Deposition of Optical Microlens Arrays by Ink-Jet Processes, Thin Solid Films, 2001, 392, p 223–225CrossRefGoogle Scholar
  17. 17.
    J. Gottert and J. Mohr, Characterization of Micro-Optical Components Fabricated by Deep-Etch X-ray Lithography, SPIE Micro-Opt. II, 1991, 1506, p 170–178Google Scholar
  18. 18.
    T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, Ultraviolet-Cured Polymer Microlens Arrays, Appl. Opt., 1999, 38, p 2991–2996CrossRefGoogle Scholar
  19. 19.
    Y.C. Lee and C.Y. Wu, Excimer Laser Micromachining of Aspheric Microlenses with Precise Surface Profile Control and Optimal Focusing Capability, Opt. Lasers Eng., 2007, 45, p 116–125CrossRefGoogle Scholar
  20. 20.
    Y. Fu, Investigation of Microlens Mold Fabricated by Focused Ion Beam Technology, Microelectron. Eng., 2001, 56, p 333–338CrossRefGoogle Scholar
  21. 21.
    W.R. Cox, T. Chen, and D. Hayes, Micro-Optics Fabrication by Ink-Jet Printing, Opt. Photon. News, 2001, 12(6), p 32–35CrossRefGoogle Scholar
  22. 22.
    G.H. Kim, A PMMA Composite as an Optical Diffuser in a Liquid Crystal Display Backlighting Unit (BLU), Eur. Polym. J., 2005, 41, p 1729–1737CrossRefGoogle Scholar
  23. 23.
    G.H. Kim, W.J. Kim, S.M. Kim, and J.G. Son, Analysis of Thermo-Physical and Optical Properties of a Diffuser Using PET/PC/PBT Copolymer in LCD Backlight Units, Displays, 2005, 26, p 37–43CrossRefGoogle Scholar
  24. 24.
    J.G. Chang and Y.B. Fang, Feasibility Study of Edge-Lit Backlight of Dual-Panel Display by a Simple Configuration Model, Displays, 2008, 29, p 285–296CrossRefGoogle Scholar
  25. 25.
    N.F. Borrelli, Efficiency of Microlens Array for Projection LCD, IEEE, 1994, 94, p 338–345Google Scholar
  26. 26.
    P. Heremans, J. Genoe, M. Kuijk, R. Vounckx, and G. Borghs, Mushroom Microlenses: Optimized Microlenses by Reflow of Multiple Layers of Photoresist, IEEE Photon Technol Lett, 1997, 9, p 1367–1369CrossRefGoogle Scholar
  27. 27.
    Y.C. Chang, T.H. Hung, H.M. Chen, J.C. Huang, T.G. Nieh, and C.J. Lee, Viscous Flow Behavior and Thermal Properties of Bulk Amorphous Mg58Cu31Y11 Alloy, Intermetallics, 2007, 15, p 1303–1308CrossRefGoogle Scholar
  28. 28.
    O.N. Senkov, J.M. Scott, and D.B. Miracle, Composition Range and Glass Forming Ability of Ternary Ca–Mg–Cu Bulk Metallic Glasses, J. Alloys Compd., 2006, 424, p 394–399CrossRefGoogle Scholar
  29. 29.
    W.Y. Liu, H.F. Zhang, Z.Q. Hua, and H. Wang, Formation and Mechanical Properties of Mg65Cu25Er10 and Mg65Cu15Ag10Er10 Bulk Amorphous Alloys, J. Alloys Compd., 2005, 397, p 202–206CrossRefGoogle Scholar
  30. 30.
    Z.P. Lu, C.T. Liu, and Y. Li, Glass Transition and Crystallization of Mg–Ni–Nd Metallic Glasses Studied by Temperature-Modulated DSC, Intermetallics, 2004, 12, p 869–874CrossRefGoogle Scholar
  31. 31.
    G. Yuan, T. Zhang, and A. Inoue, Structure and Mechanical Properties of Mg85Cu5Zn5Y5 Amorphous Alloy Containing Nanoscale Particles, Mater. Lett., 2004, 58, p 3012–3016CrossRefGoogle Scholar
  32. 32.
    G. Yuan and A. Inoue, The Effect of Ni Substitution on the Glass-Forming Ability and Mechanical Properties of Mg–Cu–Gd Metallic Glass Alloys, J. Alloys Compd., 2005, 387, p 134–138CrossRefGoogle Scholar
  33. 33.
    C.T. Pan and C.H. Su, Fabrication of Gapless Triangular Micro-Lens Array, Sens. Actuators, 2007, 134, p 631–640CrossRefGoogle Scholar
  34. 34.
    G.C. Papanicolaou, D. Bakos, and K. Imielinska, Effect of Interfacial Phenomena on the Thermal Expansion Behavior of Rubber-Toughened PMMA Composites, J. Macromol. Sci. Phys., 1998, 37, p 201–217CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • C. F. Liu
    • 1
  • C. T. Pan
    • 2
  • K. H. Liu
    • 1
  • Y. C. Chen
    • 2
  • J. L. Chen
    • 2
  • J. C. Huang
    • 3
  1. 1.Department of Mechanical EngineeringR.O.C. Military AcademyKaohsiungTaiwan, R.O.C
  2. 2.Department of Mechanical and Electro-Mechanical Engineering, and Center for Nanoscience & Nanotechnology, National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung areaNational Sun Yat-Sen UniversityKaohsiungTaiwan 804
  3. 3.Institute of Materials Science & Engineering, Center for Nanoscience and NanotechnologyNational Sun Yat-Sen UniversityKaohsiungTaiwan 804

Personalised recommendations