Journal of Materials Engineering and Performance

, Volume 20, Issue 9, pp 1678–1683 | Cite as

Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

  • M. Yousefieh
  • M. ShamanianEmail author
  • A. Saatchi


In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.


corrosion microstructure stainless steel step annealing heat treatment welding 


  1. 1.
    V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, and S. Sundaresan, Effect of Weld Metal Chemistry and Heat Input on the Structure and Properties of Duplex Stainless Steels, Mater. Sci. Eng. A, 2003, 358, p 9–16CrossRefGoogle Scholar
  2. 2.
    R.N. Gunn, Duplex Stainless Steels—Microstructure Properties and Applications, Abington Publishing, Cambridge, 2003Google Scholar
  3. 3.
    K.M. Lee, H.S. Cho, and D.C. Chjoi, Effect of Isothermal Treatment of SAF 2205 Duplex Stainless Steel on Migration of δ/γ Interface Boundary and Growth of Austenite, J. Alloys Compd., 1999, 285, p 156–161CrossRefGoogle Scholar
  4. 4.
    D.Y. Kobayashi and S. Wolynec, Evaluation of the Low Corrosion Resistant Phase Formed During the Sigma Phase Precipitation in Duplex Stainless Steels, Mater. Res., 1999, 2(4), p 239–247CrossRefGoogle Scholar
  5. 5.
    J.C. Lippold and D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, John Wiley & Sons, New York, 2005Google Scholar
  6. 6.
    J.O. Nilsson, Super Duplex Stainless Steels, Mater. Sci. Technol., 1992, 8, p 685–700Google Scholar
  7. 7.
    A.J. Ramirez, J.C. Lippold, and S.D. Brandi, The Relationship Between Chromium Nitride and Secondary Austenite Precipitation in Duplex Stainless Steels, Met. Mater. Trans. A, 2003, 34, p 1575–1597CrossRefGoogle Scholar
  8. 8.
    S.S.M. Tavares, J.M. Pardal, L.D. Lima, I.N. Bastos, A.M. Nascimento, and J.A. de Souza, Characterization of Microstructure, Chemical Composition, Corrosion Resistance and Toughness of a Multipass Weld Joint of Superduplex Stainless Steel UNS S32750, Mater. Charact., 2007, 58, p 610–616CrossRefGoogle Scholar
  9. 9.
    L. Duprez, B.D. Cooman, and N. Akdut, Microstructure Evolution During Isothermal Annealing of a Standard Duplex Stainless Steel Type 1.4462, Steel Res., 2000, 71, p 417–422Google Scholar
  10. 10.
    C.J. Park and H.S. Kwon, Electrochemical Noise Analysis of Localized Corrosion of Duplex Stainless Steel Aged at 475 °C, Mater. Chem. Phys., 2005, 91, p 355–360CrossRefGoogle Scholar
  11. 11.
    H. Tan, Y. Jiang, B. Deng, T. Sun, J. Xu, and J. Li, Effect of Annealing Temperature on the Pitting Corrosion Resistance of Super Duplex Stainless Steel UNS S32750, Mater. Charact., 2009, 60, p 1049–1054CrossRefGoogle Scholar
  12. 12.
    L. Zhang, W. Zhang, Y. Jiang, B. Deng, D. Sun, and J. Li, Influence of Annealing Treatment on the Corrosion Resistance of Lean Duplex Stainless Steel 2101, Electrochim. Acta, 2009, 54, p 5387–5392CrossRefGoogle Scholar
  13. 13.
    W. Zhang, L. Jiang, J. Hu, and H. Song, Effect of Ageing on Precipitation and Impact Energy of 2101 Economical Duplex Stainless Steel, Mater. Charact., 2009, 60, p 50–55CrossRefGoogle Scholar
  14. 14.
    F. Shi, L.J. Wang, W.F. Cui, and C.M. Liu, Precipitation Behavior of M2N in a High-Nitrogen Austenitic Stainless Steel During Isothermal Aging, Acta Metall. Sin. (Engl. Lett.), 2007, 20(2), p 95–101CrossRefGoogle Scholar
  15. 15.
    B. Deng, Z. Wang, Y. Jiang, H. Wang, J. Gao, and J. Li, Evaluation of Localized Corrosion in Duplex Stainless Steel Aged at 850 °C With Critical Pitting Temperature Measurement, Electrochim. Acta, 2008, 54, p 2790–2794CrossRefGoogle Scholar
  16. 16.
    B. Deng and Y. Jiang, Dependence of Critical Pitting Temperature on the Concentration of Sulphate Ion in Chloride-Containing Solutions, Appl. Surf. Sci., 2007, 253, p 7369–7375CrossRefGoogle Scholar
  17. 17.
    M.H. Moayed and N.J. Laycock, Dependence of the Critical Pitting Temperature on surface roughness, Corros. Sci., 2003, 45, p 1203–1216CrossRefGoogle Scholar
  18. 18.
    R. Ovarfort, Critical Pitting Temperature Measurements of Stainless Steels With An Improved Electrochemical Method, Corros. Sci., 1989, 29, p 987–993CrossRefGoogle Scholar
  19. 19.
    Image Tool Version 3.0, University of Texas Health Science Center at San Antonio, Free Software, Available in Accessed 9.3.2007
  20. 20.
    J.M. Pardal, S.S.M. Tavares, M. Cindra Fonseca, J.A. De Souza, R.R.A. Côrte, and H.F.G. De Abreu, Influence of the Grain Size on Deleterious Phase Precipitation in Superduplex Stainless Steel UNS S32750, Mater. Charact., 2009, 60, p 165–172CrossRefGoogle Scholar
  21. 21.
    C.J. Park, H.S. Kwon, and M.M. Lohrengel, Micro-Electrochemical Polarization Study on 25% Cr Duplex Stainless Steel, Mater. Sci. Eng. A, 2004, 372, p 180–185CrossRefGoogle Scholar
  22. 22.
    Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels, Designation, p 150–199Google Scholar
  23. 23.
    M.E. Wilms, V.J. Gadgil, J.M. Krougmen, and F.P. Ijsseling, The Effect of σ-Phase Precipitation at 800 °C on the Corrosion Resistance in Sea-Water of a High Alloyed Duplex Stainless Steel, Corros. Sci., 1994, 36, p 877–881CrossRefGoogle Scholar
  24. 24.
    L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu, and J. Li, Effect of Aging on the Corrosion Resistance of 2101 Lean Duplex Stainless Steel, Mater. Charact., 2009, 60, p 1522–1528CrossRefGoogle Scholar
  25. 25.
    R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, and H. Maza, Phase Transformation and Mechanical Behavior in Annealed 2205 Duplex Stainless Steel Welds, Mater. Charact., 2008, 59, p 447–453CrossRefGoogle Scholar
  26. 26.
    M. Pohl, O. Storz, and T. Glogowski, Effect of Intermetallic Precipitations on the Properties of Duplex Stainless Steel, Mater. Charact., 2007, 58, p 65–71CrossRefGoogle Scholar
  27. 27.
    V.S. Moura, L.D. Lima, J.M. Pardal, A.Y. Kina, R.R.A. Corte, and S.S.M. Tavares, Influence of Microstructure on the Corrosion Resistance of the Duplex Stainless Steel UNS S31803, Mater. Charact., 2008, 59, p 1127–1132CrossRefGoogle Scholar
  28. 28.
    G. Lothongkum, P. Wongpanya, S. Morito, T. Furuhara, and T. Maki, Effect of Nitrogen on Corrosion Behavior of 28Cr-7Ni Duplex and Microduplex Stainless Steels in Air-Saturated 3.5% NaCl Solution, Corros. Sci., 2006, 48, p 137–153CrossRefGoogle Scholar
  29. 29.
    L. Weber and P.J. Uggowitzer, Partitioning of Chromium and Molybdenum in Duplex Stainless Steels With Respect to Nitrogen and Nickel Content, Mater. Sci. Eng. A, 1998, 242, p 222–229CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations