Advertisement

Journal of Materials Engineering and Performance

, Volume 21, Issue 11, pp 2207–2217 | Cite as

Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses

  • M. Grujicic
  • B. Pandurangan
  • C.-F. Yen
  • B. A. Cheeseman
Article

Abstract

Johnson-Cook strength material model is frequently used in finite-element analyses of various manufacturing processes involving plastic deformation of metallic materials. The main attraction to this model arises from its mathematical simplicity and its ability to capture the first-order metal-working effects (e.g., those associated with the influence of plastic deformation, rate of deformation, and the attendant temperature). However, this model displays serious shortcomings when used in the engineering analyses of various hot-working processes (i.e., those utilizing temperatures higher than the material recrystallization temperature). These shortcomings are related to the fact that microstructural changes involving: (i) irreversible decrease in the dislocation density due to the operation of annealing/recrystallization processes; (ii) increase in grain-size due to high-temperature exposure; and (iii) dynamic-recrystallization-induced grain refinement are not accounted for by the model. In this study, an attempt is made to combine the basic physical-metallurgy principles with the associated kinetics relations to properly modify the Johnson-Cook material model, so that the model can be used in the analyses of metal hot-working and joining processes. The model is next used to help establish relationships between process parameters, material microstructure and properties in friction stir welding welds of AA5083 (a non-age-hardenable, solid-solution strengthened, strain-hardened/stabilized Al-Mg-Mn alloy).

Keywords

AA5083 friction stir welding Johnson-Cook material model 

Notes

Acknowledgments

The material presented in this paper is based on work supported by two Army Research Office sponsored grants (W911NF-11-1-0207 and W911NF-09-1-0513) and two U.S. Army/Clemson University Cooperative Agreements (W911NF-04-2-0024 and W911NF-06-2-0042).

References

  1. 1.
    G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983Google Scholar
  2. 2.
    “Armor Plate, Aluminum Alloy, Weldable 5083 and 5456”; MIL-DTL-46027J, U.S. Department of Defense, Washington DC, August 1992Google Scholar
  3. 3.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C. J. Dawes. Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991Google Scholar
  4. 4.
    C.J. Dawes and W.M. Thomas, Friction Stir Process Welds Aluminum Alloys, Weld. J., 1996, 75, p 41–52Google Scholar
  5. 5.
    W.M. Thomas and R.E. Dolby. Friction Stir Welding Developments, Proceedings of the Sixth International Trends in Welding Research, S. A. David, T. DebRoy, J. C. Lippold, H. B. Smartt and J. M. Vitek, Eds., ASM International, Materials Park, OH, USA, 2003, p 203–211Google Scholar
  6. 6.
    J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminum, Acta Mater., 2003, 51, p 713–729CrossRefGoogle Scholar
  7. 7.
    W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59, p 3315–3318CrossRefGoogle Scholar
  8. 8.
    H. Schmidt, T.L. Dickerson, and J. Hattel, Material Flow in Butt Friction Stir Welds in AA2024-T3, Acta Mater., 2006, 54, p 1199–1209CrossRefGoogle Scholar
  9. 9.
    L. Fratini, G. Buffa, D. Palmeri, J. Hua, and R. Shivpuri, Material Flow in FSW of AA7075–T6 Butt Joints: Numerical Simulations and Experimental Verifications, Sci. Technol. Weld. Join., 2006, 11, p 412–421CrossRefGoogle Scholar
  10. 10.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78CrossRefGoogle Scholar
  11. 11.
    H.W. Zhang, Z. Zhang, and J.T. Chen, The Finite Element Simulation of the Friction Stir Welding Process, Mater. Sci. Eng. A, 2005, 403, p 340–348CrossRefGoogle Scholar
  12. 12.
    H.G. Salem, A.P. Reynolds, and J.S. Lyons, Microstructure and Retention of Superplasticity of Friction Stir Welded Superplastic 2095 Sheet, Scripta Mater., 2002, 46, p 337–342CrossRefGoogle Scholar
  13. 13.
    M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19(5), p 672–684CrossRefGoogle Scholar
  14. 14.
    M. Grujicic, G. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2010, 20(7), p 1097–1108CrossRefGoogle Scholar
  15. 15.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083–H321, J. Mater. Eng. Perform., 2010, 20(6), p 855–864CrossRefGoogle Scholar
  16. 16.
    M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224(4), p 609–625CrossRefGoogle Scholar
  17. 17.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-effective Friction Stir Welding Process for use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20(1), p 11–23CrossRefGoogle Scholar
  18. 18.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2011, 225(2), p 208–223CrossRefGoogle Scholar
  19. 19.
    M. Grujicic, G. Arakere, A. Hariharan, B. Pandurangan, C-.F. Yen, and B.A. Cheeseman, A Concurrent Design, Manufacturing and Testing Product Development Approach for Friction-stir Welded Vehicle Underbody Structures, J. Mater. Eng. Perform. 2010. doi:  10.1007/s11665-011-9955-7
  20. 20.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224(8), p 1–16Google Scholar
  21. 21.
    Z. Huda and T. Zaharinie, Kinetics of Grain Growth in 2024-T3: An Aerospace Aluminum Alloy, J. Alloys Compd., 2009, 478, p 128–132CrossRefGoogle Scholar
  22. 22.
    I. Mazuruna, T. Sakai, H. Miura, O. Sitdikov, and R. Kaibishev, Effect of Deformation Temperature on Microstructure Evolution in Aluminum Alloy 2219 During Hot ECAP, Mater. Sci. Eng. A, 2008, 486, p 662–671CrossRefGoogle Scholar
  23. 23.
    ABAQUS Version 6.10EF, User Documentation, Dassault Systems, 2011Google Scholar
  24. 24.
    S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld Join., 2001, 6, p 191–193CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • M. Grujicic
    • 1
  • B. Pandurangan
    • 1
  • C.-F. Yen
    • 2
  • B. A. Cheeseman
    • 2
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Army Research Laboratory—Survivability Materials BranchAberdeen, Proving GroundUSA

Personalised recommendations