Journal of Materials Engineering and Performance

, Volume 21, Issue 8, pp 1708–1713 | Cite as

Effects of Temperature on Microstructure and Wear of Salt Bath Nitrided 17-4PH Stainless Steel

  • Jun Wang
  • Yuanhua Lin
  • Hongyuan Fan
  • Dezhi Zeng
  • Qian Peng
  • Baoluo Shen


Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650 °C for 2 h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (α′), expanded austenite (γN), CrN, Fe4N, and (Fe,Cr)xOy. In the sample nitrided above 610 °C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650 °C, the expanded austenite decomposed into αN and CrN. The decomposed αN then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125 ± 5 kJ/mol.


17-4PH stainless steel complex salt bath nitriding microstructure temperature wear property 


  1. 1.
    W. Jui Hung and L. Chih Kuang, Influence of High Temperature Exposure on the Mechanical Behavior and Microstructure of 17-4 PH Stainless Steel, J. Mater. Sci., 2003, 38, p 965CrossRefGoogle Scholar
  2. 2.
    J. Wang, H. Zou, X. Wu, and C. Li, The Effect of Long-Term Isothermal Aging on Dynamic Fracture Toughness of Type 17-4 PH SS at 350°C, Mater. Trans., 2005, 46, p 846CrossRefGoogle Scholar
  3. 3.
    A. Leyland, D.B. Lewis, P.R. Stevenson, and A. Matthews, Low Temperature Plasma Diffusion Treatment of Stainless Steels for Improved Wear Resistance, Surf. Coat. Technol., 1993, 62, p 608CrossRefGoogle Scholar
  4. 4.
    F. Alonso, A. Arizaga, A. Garcia, and J.I. Onate, Tribological Effects of Yttrium, Nitrogen Ion Implantation on a Precipitation Hardening Stainless Steel, Surf. Coat. Technol., 1994, 66, p 291CrossRefGoogle Scholar
  5. 5.
    B. Tesi, T. Bacci, and G. Poli, Analysis of Surface Structures and of Size and Shape Variations in Ionitrided Precipitation Hardening Stainless Steel Samples, Vacuum, 1985, 35(8), p 307CrossRefGoogle Scholar
  6. 6.
    Y. Sun and T. Bell, Plasma Surface Engineering of a Low-Alloy Steel, Mater. Sci. Eng. A, 1991, 140, p 419CrossRefGoogle Scholar
  7. 7.
    Y. Sun, T. Bell, and G. Wood, Wear Behaviour of Plasma-Nitrided Martensitic Stainless Steel, Wear, 1994, 178, p 131CrossRefGoogle Scholar
  8. 8.
    D. Manova, G. Thorwarth, S. Mandl, H. Neumann, B. Stritzker, and B. Rauschenbach, Variable Lattice Expansion in Martensitic Stainless Steel After Nitrogen Ion Implantation, Nucl. Instrum. Methods B, 2006, 242, p 285CrossRefGoogle Scholar
  9. 9.
    R.B. Frandsen, T. Christiansen, and M.A.J. Somers, Simultaneous Surface Engineering, Bulk Hardening of Precipitation Hardening Stainless Steel, Surf. Coat. Technol., 2006, 200, p 5160CrossRefGoogle Scholar
  10. 10.
    Y. Sun and T. Bell, Low Temperature Plasma Nitriding Characteristics of Precipitation Hardening Stainless Steel, Surf. Eng., 2003, 19(5), p 331CrossRefGoogle Scholar
  11. 11.
    H. Dong, M. Esfandiari, and X.Y. Li, On the Microstructure and Phase Identification of Plasma Nitrided 17-4PH Precipitation Hardening Stainless Steel, Surf. Coat. Technol., 2008, 202, p 2969CrossRefGoogle Scholar
  12. 12.
    P. Kochmański and J. Nowacki, Activated Gas Nitriding of 17-4PH Stainless Steel, Surf. Coat. Technol., 2006, 200, p 6558CrossRefGoogle Scholar
  13. 13.
    K. Marusic, H. Otmacic, D. Landek, and F. Cajner, Modification of Carbon Steel Surface by the Tenifer® Process of Nitrocarburizing and Post-oxidation, Surf. Coat. Technol., 2006, 201, p 3415CrossRefGoogle Scholar
  14. 14.
    H.Y. Li, D.F. Luo, C.F. Yeung, and K.H. Lau, Advanced QPQ Complex Salt Bath Heat Treatment, J. Mater. Process. Technol., 1997, 69, p 45CrossRefGoogle Scholar
  15. 15.
    C.F. Yeung, K.H. Lau, H.Y. Li, and D.F. Luo, Microstructural Studies of QPQ Complex Salt Bath Heat-Treated Steels, J. Mater. Process. Technol., 1997, 66, p 249CrossRefGoogle Scholar
  16. 16.
    C. Blawert, A. Weisheit, B.L. Mordike, and R.M. Knoop, Plasma Immersion Ion Implantation of Stainless Steel: Austenitic Stainless Steel in Comparison to Austenitic-Ferritic Stainless Steel, Surf. Coat. Technol., 1996, 85, p 15–27CrossRefGoogle Scholar
  17. 17.
    B. Larisch, U. Brusky, and H.J. Spies, Plasma Nitriding of Stainless Steels at Low Temperatures, Surf Coat Technol., 1999, 116–119, p 205CrossRefGoogle Scholar
  18. 18.
    C.E. Foerster, F.C. Serbena, S.L.R. da Silva, C.M. Lepienski, C.J. de M. Siqueira, and M. Ueda, Mechanical and Tribological Properties of AISI 304 Stainless Steel Nitrided by Glow Discharge Compared to Ion Implantation and Plasma Immersion Ion Implantation, Nucl. Instrum. Methods B, 2007, 257, p 732Google Scholar
  19. 19.
    K. Stiller, M. Hattestrand, and F. Danoix, Precipitation in 9Ni-12Cr-2Cu Maraging Steels, Acta Mater., 1998, 46, p 6063CrossRefGoogle Scholar
  20. 20.
    C.N. Hsiao, C.S. Chiou, and J.R. Yong, Aging Reactions in a 17-4 PH Stainless Steel, Mater. Chem. Phys., 2002, 74, p 132CrossRefGoogle Scholar
  21. 21.
    V.I. Dimitrov, J. Dhaen, G. Knuyt, C. Quaeyhaegens, and L.M. Stals, A Method for Determination of the Effective Diffusion Coefficient and Sputtering Rate During Plasma Diffusion Treatment, Surf. Coat. Technol., 1998, 99, p 23CrossRefGoogle Scholar
  22. 22.
    E. Menthe and K.-T. Rie, Further Investigation of the Structure and Properties of Austentic Stainless Steel After Plasma Nitriding, Surf. Coat. Technol., 1999, 116–119, p 199CrossRefGoogle Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • Jun Wang
    • 1
    • 2
  • Yuanhua Lin
    • 3
  • Hongyuan Fan
    • 1
  • Dezhi Zeng
    • 3
  • Qian Peng
    • 2
  • Baoluo Shen
    • 1
  1. 1.School of Manufacturing Science and EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.National Key Laboratory for Nuclear Fuel and MaterialsNuclear Power Institute of ChinaChengduPeople’s Republic of China
  3. 3.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduPeople’s Republic of China

Personalised recommendations