Journal of Materials Engineering and Performance

, Volume 21, Issue 9, pp 1824–1840 | Cite as

Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

  • M. Grujicic
  • G. Arakere
  • B. Pandurangan
  • J. M. Ochterbeck
  • C-F. Yen
  • B. A. Cheeseman
  • A. P. Reynolds
  • M. A. Sutton


Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.


friction stir welding material-flow simulation and analysis process modeling 



The material presented in this paper is based on work supported by two Army Research Office sponsored Grants (W911NF-11-1-0207 and W911NF-09-1-0513) and two U.S. Army/Clemson University Cooperative Agreements (W911NF-04-2-0024 and W911NF-06-2-0042).


  1. 1.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203 (1991)Google Scholar
  2. 2.
    C.J. Dawes and W.M. Thomas, Friction Stir Joining of Aluminum Alloys, TWI Bull., 1996, 6, p 124Google Scholar
  3. 3.
    H. Liu, H. Fulii, M. Maeda, and K. Nogi, Tensile Properties and Fracture locations of Friction-Stir Welded joints of 6061-T6 Aluminium Alloy, J. Mater. Sci. Lett., 2003, 22, p 1061–1063CrossRefGoogle Scholar
  4. 4.
    W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59, p 3315–3318CrossRefGoogle Scholar
  5. 5.
    W.M. Thomas and E.D. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18, p 269–273CrossRefGoogle Scholar
  6. 6.
    J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminum, Acta Mater., 2003, 51, p 713–729CrossRefGoogle Scholar
  7. 7.
    O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32, p 1189–1200CrossRefGoogle Scholar
  8. 8.
    M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction-Stir-Welded 7075 T651 Aluminum, Mater. Trans. A, 7075, 29(1998), p 1955–1964Google Scholar
  9. 9.
    C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum, Scripta Mater., 1997, 36, p 69–75CrossRefGoogle Scholar
  10. 10.
    G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, and F.R. Vega, Microstructural Aspects of the Friction-Stir-Welding of 6061-T6 Aluminum, Scripta Mater., 1997, 37, p 355–361CrossRefGoogle Scholar
  11. 11.
    M. Grujicic, G. Arakere, C-F.Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution during Friction-stir Welding of AA5083 and AA2139 aluminum alloys, J. Mater. Eng. Perform., 2010. doi: 10.1007/s11665-010-9741-y
  12. 12.
    M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 8, p 165–174CrossRefGoogle Scholar
  13. 13.
    S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld. Join., 2001, 6, p 191–193CrossRefGoogle Scholar
  14. 14.
    K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scripta Mater., 2000, 43, p 743–748CrossRefGoogle Scholar
  15. 15.
    R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding, Metall. Mater. Trans. A, 2006, 37, p 1247–1259CrossRefGoogle Scholar
  16. 16.
    R. Nandan, G.G. Roy, and T. DebRoy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55, p 883–895CrossRefGoogle Scholar
  17. 17.
    R. Nandan, T.J. Lienert, and T. DebRoy, Toward Reliable Calculations of Heat And Plastic Flow During Friction Stir Welding of Ti-6Al-4V Alloy, Int. J. Mater. Res., 2008, 99, p 434–444CrossRefGoogle Scholar
  18. 18.
    H. Schmidt, T.L. Dickerson, and J. Hattel, Material Flow in Butt Friction Stir Welds In AA2024-T3, Acta Mater., 2006, 54, p 1199–1209CrossRefGoogle Scholar
  19. 19.
    L. Fratini, G. Buffa, D. Palmeri, J. Hua, and R. Shivpuri, Material Flow in FSW of AA7075-T6 Butt Joints: Numerical Simulations and Experimental Verifications, Sci. Technol. Weld. Join., 2006, 11, p 412–421CrossRefGoogle Scholar
  20. 20.
    M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224(4), p 609–625CrossRefGoogle Scholar
  21. 21.
    M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19(5), p 672–684CrossRefGoogle Scholar
  22. 22.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224(8), p 1–16Google Scholar
  23. 23.
    M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-development Approach for Friction-stir Welded Vehicle-underbody Structures, J. Eng. Manuf., 2011. doi: 10.1007/s11665-011-9955-7
  24. 24.
    O.T. Midling, Material Flow Behavior and Microstructural Integrity of Friction Stir Butt Weldments, Proc. 4th International Conf. on Aluminum Alloys, Atlanta, GA, 1994Google Scholar
  25. 25.
    Y. Li, L.E. Murr, and J.C. McClure, Solid-State Flow Visualization in the Friction-Stir Welding of 2024 Al to 6061 Al, Scripta Mater., 1999, 40, p 1041–1046CrossRefGoogle Scholar
  26. 26.
    K. Colligan, Material Flow Behavior During Friction Stir Welding of Aluminum, Weld. J., 1999, 78(7), p 229–237Google Scholar
  27. 27.
    A.P. Reynolds, T.U. Seidel, and M. Simonsen, Visualisation of Material Flow in an Autogenous Friction Stir Weld, Proc. 1st International Symp. FSW, Thousand Oaks, CA, 1999Google Scholar
  28. 28.
    A.P. Reynolds, Visualization of Material Flow in an Autogenous Friction Stir Weld, Sci. Technol. Weld. Join., 2000, 5, p 120–124CrossRefGoogle Scholar
  29. 29.
    T.U. Seidel and A.P. Reynolds, Proc. SECTAM, Pine Mountain, GA, 2000Google Scholar
  30. 30.
    T.U. Seidel and A.P. Reynolds, Visualization of the Material Flow in AA2195 Friction-Stir Welds Using a Marker Insert Technique, Metall. Mater. Trans. A, 2001, 32, p 2879–2884CrossRefGoogle Scholar
  31. 31.
    ABAQUS Version 6.10EF, User Documentation, Dassault Systems, 2011Google Scholar
  32. 32.
    S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld. Join., 2001, 6, p 191–193CrossRefGoogle Scholar
  33. 33.
    G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983.Google Scholar

Copyright information

© ASM International 2011

Authors and Affiliations

  • M. Grujicic
    • 1
  • G. Arakere
    • 1
  • B. Pandurangan
    • 1
  • J. M. Ochterbeck
    • 1
  • C-F. Yen
    • 2
  • B. A. Cheeseman
    • 2
  • A. P. Reynolds
    • 3
  • M. A. Sutton
    • 3
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Army Research Laboratory—Survivability Materials BranchAberdeen, Proving GroundUSA
  3. 3.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations