Advertisement

Journal of Materials Engineering and Performance

, Volume 20, Issue 9, pp 1606–1612 | Cite as

Effect of Particle Size on the Microstructures and Mechanical Properties of SiC-Reinforced Pure Aluminum Composites

  • Chao Sun
  • Min SongEmail author
  • Zhangwei Wang
  • Yuehui He
Article

Abstract

This article examined the effects of particle size and extrusion on the microstructures and mechanical properties of SiC particle-reinforced pure aluminum composites produced by powder metallurgy method. It has been shown that both particle size and extrusion have important effects on the microstructures and mechanical properties of the composites. The SiC particles distribute more uniformly when the ratio of the matrix powder size and SiC particle size approaches unity, and the smaller-sized SiC particles tend to cluster easily. The voids are found to coexist with the clustered and large-sized SiC particles, and they significantly decrease the density and mechanical properties of the composites. Extrusion can redistribute the SiC particles in the matrix and decrease the number of pores, thus make the SiC particles distribute more uniformly in the matrix, and enhance the interfacial bonding strength. The decrease in the SiC particle size improves the tensile strength and yield strength, but decreases the ductility of the composites.

Keywords

mechanical properties metal matrix composites microstructures particle size 

Notes

Acknowledgments

This study is supported by the National Natural Science Foundation of China (50801068), the Ph.D. Programs Foundation of Ministry of Education of China (200805331044), and the Chinese Postdoctoral Science Foundation (200801345).

References

  1. 1.
    N. Chawla and Y.-L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p 357–370CrossRefGoogle Scholar
  2. 2.
    H.K. Lee, A Computational Approach to the Investigation of Impact Damage Evolution in Discontinuously Reinforced Fiber Composites, Comput. Mech., 2001, 27(6), p 504–512CrossRefGoogle Scholar
  3. 3.
    S.W. Kim, U.J. Lee, S.W. Han, D.K. Kim, and K. Ogi, Heat Treatment and Wear Characteristics of Al/SiCp Composites Fabricated by Duplex Process, Composite: Part B, 2003, 34(8), p 737–745CrossRefGoogle Scholar
  4. 4.
    J.M. Torralba, C.E. da Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133(1–2), p 203–206CrossRefGoogle Scholar
  5. 5.
    S.J. Hong, H.M. Kim, D. Huh, C. Suryanarayana, and B.S. Chun, Effect of Clustering on the Mechanical Properties of SiC Particulate Reinforced Aluminum Alloy 2024 Metal Matrix Composites, Mater. Sci. Eng. A, 2003, 347(1–2), p 198–204Google Scholar
  6. 6.
    A. Slipenyuk, V. Kuprin, Y. Milman, J.E. Spowart, and D.B. Miracle, The Effect of Matrix to Reinforcement Particle Size Ratio (PSR) on the Microstructure and Mechanical Properties of a P/M Processed AlCuMn/SiCp MMC, Mater. Sci. Eng. A, 2004, 381(1–2), p 165–170Google Scholar
  7. 7.
    K.K. Chawla and M. Metzger, Initial Dislocation Distributions in Tungsten Fiber-Copper Composites, J. Mater. Sci., 1972, 7(1), p 34–39CrossRefGoogle Scholar
  8. 8.
    M. Vogelsang, R.J. Arsenault, and R.M. Fisher, An in Suit HVEM Study of Dislocation Generation at Al/SiC Interface in Metal Matrix Composites, Metall. Trans. A, 1986, 17(3), p 379–389CrossRefGoogle Scholar
  9. 9.
    R.J. Arsenault and N. Shi, Dislocation Generation Due to Differences Between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81, p 175–187CrossRefGoogle Scholar
  10. 10.
    Y.W. Yan, L. Geng, and A.B. Li, Experimental and Numerical Studies of the Effect of Particle Size on the Deformation Behavior of the Metal Matrix Composites, Mater. Sci. Eng. A, 2007, 448(1–2), p 315–325Google Scholar
  11. 11.
    M.F. Ashby, The Deformation of Plastically Non-Homogeneous Materials, Philos. Mag., 1970, 21(170), p 399–424CrossRefGoogle Scholar
  12. 12.
    N. Chawla, J.J. Williams, and R. Saha, Mechanical Behavior and Microstructure Characterization of Sinter-Forged SiC Particle Reinforced Aluminum Matrix Composites, J. Light Met., 2002, 2(4), p 215–227CrossRefGoogle Scholar
  13. 13.
    F. Tang, H. Meeks, J.E. Spowart, T. Gnaeupel-Herold, H. Prask, and I.E. Anderson, Consolidation Effects on Tensile Properties of an Elemental Al Matrix Composite, Mater. Sci. Eng. A, 2004, 386(1–2), p 194–204Google Scholar
  14. 14.
    L.C. Davis, C. Andres, and J.E. Allison, Microstructure and Strengthening of Metal Matrix Composites, Mater. Sci. Eng. A, 1998, 249(1–2), p 40–45Google Scholar
  15. 15.
    A. Rabiei, L. Vendra, and T. Kishi, Fracture Behavior of Particle Reinforced Metal Matrix Composites, Composite: Part A, 2008, 39(2), p 294–300CrossRefGoogle Scholar
  16. 16.
    M. Kok, Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites, J. Mater. Process. Technol., 2005, 161(3), p 381–387CrossRefGoogle Scholar
  17. 17.
    V.V. Bhanu Prasad, B.V.R. Bhat, Y.R. Mahajan, and P. Ramakrishnan, Structure-Property Correlation in Discontinuously Reinforced Aluminium Matrix Composites as a Function of Relative Particle Size Ratio, Mater. Sci. Eng. A, 2002, 337(1–2), p 179–186Google Scholar
  18. 18.
    Ž. Gnjidić, D. Božić, and M. Mitkov, The Influence of SiC Particles on the Compressive Properties of Metal Matrix Composites, Mater. Charact., 2001, 47(2), p 129–138CrossRefGoogle Scholar
  19. 19.
    S. Kumai, J. Hu, Y. Higo, and S. Numomura, Effect of Dendrite Cell Size and Particle Distribution on the Near-Threshold Fatigue Crack Growth Behavior of Cast Al-SiCp Composites, Acta Mater., 1996, 44(6), p 2249–2257CrossRefGoogle Scholar
  20. 20.
    P.M. Singh and J.J. Lewandowski, Effects of Heat Treatment and Reinforcement Size on Reinforcement Fracture During Tension Testing of a SiCp Discontinuously Reinforced Aluminum Alloy, Metall. Trans. A, 1993, 24(11), p 2531–2543CrossRefGoogle Scholar
  21. 21.
    R. Ekici, M.K. Apalak, M. Yıldırım, and F. Nair, Effects of Random Particle Dispersion and Size on the Indentation Behavior of SiC Particle Reinforced Metal Matrix Composites, Mater. Des., 2010, 31(6), p 2818–2833CrossRefGoogle Scholar
  22. 22.
    I.C. Stone and P. Tsakiropoulos, The Spatial Distribution of Reinforcement in PM Al/SiCp MMCs and Its Effect on Their Processing and Properties, Metal Matrix Composites, 9th ed., A. Miravete, Ed., July 12–16, 1993 (Spain), Woodhead Publishing Limited, 1993, p 271–278Google Scholar
  23. 23.
    A. Slipenyuk, V. Kuprin, Y. Milman, V. Goncharuk, and J. Eckert, Properties of P/M Processed Particle Reinforced Metal Matrix Composites Specified by Reinforcement Concentration and Matrix-to-Reinforcement Particle Size Ratio, Acta Mater., 2006, 54(1), p 157–166CrossRefGoogle Scholar
  24. 24.
    J.J. Williams, G. Piotrowski, R. Saha, and N. Chawla, Effect of Overaging and Particle Size on Tensile Deformation and Fracture of Particle-Reinforced Aluminum Matrix Composites, Metall. Mater. Trans. A, 2002, 33(12), p 3861–3869CrossRefGoogle Scholar
  25. 25.
    M. Song, Y.H. He, and S.F. Fang, Yield Stress of SiC Reinforced Aluminum Alloy Composites, J. Mater. Sci., 2010, 45(15), p 4097–4110CrossRefGoogle Scholar
  26. 26.
    M. Finot, Y.-L. Shen, A. Needleman, and S. Suresh, Micromechanical Modeling of Reinforcement Fracture in Particle-Reinforced Metal-Matrix Composites, Metall. Mater. Trans. A, 1994, 25(11), p 2403–2420CrossRefGoogle Scholar
  27. 27.
    Y.-L. Shen, E. Fishencord, and N. Chawla, Correlating Macrohardness and Tensile Behavior in Discontinuously Reinforced Metal Matrix Composites, Scripta Mater., 2000, 42(5), p 427–432CrossRefGoogle Scholar
  28. 28.
    M. Song and D.H. Xiao, Modeling the Fracture Toughness and Tensile Ductility of SiCp/Al Metal Matrix Composites, Mater. Sci. Eng. A, 2008, 474(1–2), p 371–375Google Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations