Journal of Materials Engineering and Performance

, Volume 20, Issue 7, pp 1171–1179 | Cite as

Effect of Stretch Orientation and Rolling Orientation on the Mechanical Properties of 2195 Al-Cu-Li Alloy

  • O. S. Es-Said
  • C. J. Parrish
  • C. A. Bradberry
  • J. Y. Hassoun
  • R. A. Parish
  • A. Nash
  • N. C. Smythe
  • K. N. Tran
  • T. Ruperto
  • E. W. Lee
  • D. Mitchell
  • C. Vinquist
Article

Abstract

Sheets of 2195 aluminum-lithium alloy were solution-treated at 507 °C for 30 min. One set was stretched to 3-5% in the 0°, 45°, and 90° angle with respect to the original rolling direction. Two other sets were rolled 6% reduction in thickness and 24% reduction in thickness in the 0°, 45°, and 90° angle with respect to the original rolling direction. All specimens were aged at 143 °C for 36 h. A second group of samples was rolled at 24 and 50% reduction in thickness after a solution treatment of 507 °C for 1 h prior to aging at 190 °C for 24 h. Tensile specimens were machined from each sheet at 0°, 45°, and 90° angles to the original grain orientation. Tensile testing was used to determine the mechanical properties and anisotropic behavior of each condition. Rolling 6% reduction in thickness in the 45° orientation yielded anisotropy of 7.6% in the yield strength.

Keywords

2195 Al-Li anisotropy rolling orientation stretch orientation 

References

  1. 1.
    Z.X. Li, R.A. Mirshams, E.A. Kenik, and P.J. Hartley, Effect of Stretching Prior to Aging on Mechanical Properties in Al-Cu-Li (2195) Alloy, Light Weight Alloys for Aerospace Applications IV, E.W. Lee, K.V. Jata, W.E. Frazier, and N.J. Kim, Ed., TMS, Orlando, 1997, p 117–127 Google Scholar
  2. 2.
    E.A. Starke Jr. and B.N. Bhat, Technical Summary, Aluminum-Lithium Alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 1–2Google Scholar
  3. 3.
    R.J. Schwinghammer, Deputy Director of Space transportation systems, NASA-George C. Marshall space flight center, Opening Remarks, Alumminum-Lithium Alloys for Aerospace Applications Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 1–2Google Scholar
  4. 4.
    N. Jiang, X. Gao, and Z.-q. Zheng, Microstructure Evolution of Aluminum-Lithium Alloy 2195 Undergoing Commercial Production, Trans. Nonferrous Met. Soc. China, 2010, 20, p 740–745CrossRefGoogle Scholar
  5. 5.
    J.H. Sanders, Investigation of Grain Boundary Chemistry in Al-Li 2195 Welds Using Auger Electron Spectroscopy, Thin Solid Films, 1996, 277(1/2), p 121–127CrossRefGoogle Scholar
  6. 6.
    M.C. Chaturvedi and D.L. Chen, Effect of Specimen Orientation and Welding on the Fracture and Fatigue Properties of 2195 Al-Li Alloy, Mater. Sci. Eng., 2004, 387(389), p 465–469Google Scholar
  7. 7.
    I.K. Hall and D.B. Sisk, Aluminum-Lithium Alloy 2195 Revision Aging Study, Aluminum-Lithium alloys for Aerospace application workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 114–120Google Scholar
  8. 8.
    T.J. Langan, P.E. McCubbin, and J.R. Pickens, Environmentally Assisted Cracking and Localized Corrosion Susceptibility for Aluminum Alloys 2195 and 2219, Aluminum-Lithium Alloys for Aerospace Applications Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 114–120Google Scholar
  9. 9.
    K.H. Hou, W.A. Baeslack III, J.C. Lippold, and A. Szabo, Microstructure Evolution in the Heat-Affected Zone of a Gas Tungsten-Arc Welded Al-2195, Aluminum-Lithium Alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 288–298Google Scholar
  10. 10.
    R.G. Thompson, Analysis of Weld Hot Cracks in Al-Li Alloy 2195, Aluminum-Lithium alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 246–298Google Scholar
  11. 11.
    P.C. Bastias, M. Diehm, G.T. Hahn, K-Y. Kim, M. Kral, S.R. Shah, J.E. Witting, Analysis of the 2195 Aluminum-Lithium Alloy Weld Microstructure and Fracture Behavior, Aluminum-Lithium Alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 205–214Google Scholar
  12. 12.
    R.M Diwan, P.D. Torres, and T. Malone, Stress Corrosion Cracking and Microstructure Evaluation and Aluminum Lithium Alloy 2195-RT 70 Variable Polarity Plasma Arc (VPPA) Weldments, Aluminum-Lithium Alloys for Aerospace Application Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 144–154Google Scholar
  13. 13.
    J.E. Dyer, D.B. Sisk, and I.K. Hall, Near-net forging of aluminum-lithium alloy 2195, Aluminum-Lithium Alloys for Aerospace Applications Workshop. B.N. Bhat, T.T. Bayles, and E.J. Vesely, Jr., Ed., December 1994, p 309–318Google Scholar
  14. 14.
    S.J. Hales and R.A. Hafley, “Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions,” Technical Report, NASA, 2001, tp210839Google Scholar
  15. 15.
    W.M. Johnston, W.D. Pollock, and D.S. Dawicke. “Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens,” NASA, 2002, 211942Google Scholar
  16. 16.
    M.L. Bairwa, S..G. Desai, and P.P. Date, Identification of Heat Treatments for Better Formability in an Aluminum-Lithium Alloy Sheet, JMEPEG, 2005, 14, p 623–633CrossRefGoogle Scholar
  17. 17.
    R. Rioja, Fabrication Methods to Manufacture Isotropic Al-Li Alloys and Products for Space and Aerospace Applications, Mater. Sci. Eng., 1998, A257, p 100–107Google Scholar
  18. 18.
    N.J. Kim and E.W. Lee, Effect of T1 Precipitate on the Anisotropy of Al-Li Alloy 2090, Acta Metall. Mater., 1993, 41, p 941CrossRefGoogle Scholar
  19. 19.
    A. Cho, A Method of Minimizing Strength Anisotropy in Aluminum-Lithium Alloy Wrought Product by Cold Rolling, Stretching and Aging. US Patent 5,439,536. 28 Feb 1995Google Scholar
  20. 20.
    A. Cho, A Method of Minimizing Strength Anisotropy in Aluminum-Lithium Alloy Wrought Product by Cold Rolling, Stretching And Aging, US Patent 5,393,536,357, 8 Aug 1995Google Scholar
  21. 21.
    O.S. Es-Said and E.W. Lee, The Effect Of Stretch Orientation (and Rolling Mode) on the Tensile Behavior of 2095 Aluminum-Lithium Alloy, Light Weight Alloys for Aerospace Applications III, E.W. Lee, K.V. Jata, W.E. Frazier, N.J. Kim, Ed., TMS, 1995, p 57–64Google Scholar
  22. 22.
    E.W. Lee, P.N. Kalu, L. Brandao, O.S. Es-Said, J. Foyos, and H. Garmestani, The Effect of Off-Axis Thermo-Mechanical Processing on the Mechanical Behavior of Textured 2095 Al-Li Alloy, Mater. Sci. Eng., 1999, A265, p 100–109Google Scholar
  23. 23.
    “MatWeb—The Online Materials Information Resource.” Online Materials Information Resource—MatWeb. N.p., n.d. Web. 20 April 2010, http://www.matweb.com/search/DataSheet.aspx?MatGUID=4363dafc7f5545688506d8b4af1e9468&ckck=1
  24. 24.
    O.S. Es-Said, F. Fisher, D. Johansen, J. Quattrocchi, D. Raizk, C. Venture, K. Zakharia, D. Ruhl, N. Khankan, M. Rajabi, R. Archilla, and H. Petel, The Effect of Stretch Orientation (and Rolling Mode) on the Tensile Behavior of 2095 Aluminum-Lithium alloy, J. Mater. Eng. Perform., 1994, 3(2), p 292–299CrossRefGoogle Scholar
  25. 25.
    M. Trinca, A. Avaliano, H. Garmestani, J. Foyos, E.W. Lee, and O.S. Es-Said, Effect of Rolling Orientation on the Mechanical Properties and Crystallographic Texture or 2195 Aluminum-Lithium Alloy, Materials Science Forum, 2000, 331337, p 849–854, 2000 Trans Tech Publications, SwitzerlandGoogle Scholar
  26. 26.
    F. Barlat and O. Richmond, Prediction of Tricomponent Plane Stress Yield Surfaces and Associated Flow and Failure Behavior of Strongly Textured F.C.C. Polycrystalline Sheets, Mater. Sci. Eng., 2000, 95, p 15–29Google Scholar
  27. 27.
    E.N. Prasad, A.A. Gokhale, and P. Rama Rao, Mechanical Behaviour of Aluminum-Lithium Alloys, Sadhana, 2003, 28, p 229–246CrossRefGoogle Scholar
  28. 28.
    K. Jata, A. Hopkins, and R. Rioja, The Anisotropy and Texture of Al-Li Alloys, Materials Science Forum., 1996, 217–222, p 647–652CrossRefGoogle Scholar
  29. 29.
    K.E. Crosby, R.A. Mirshams, and S. Pang, Crystallographic Texture and Yield Behaviour of Al-Cu-Li (2195) Plate, Mater. Res. Soc. Symp. Proc., 2000, 578, p 439–444CrossRefGoogle Scholar
  30. 30.
    K.E. Crosby, R.A. Mirshams, and S.S. Pang, Development of Texture and Texture Gradient in Al-Cu-Li (2195) Thick Plate, J. Mater. Sci., 2000, 35, p 3189–3195CrossRefGoogle Scholar
  31. 31.
    A. Fjeldly and H.J. Roven, Observations, Calculations on Mechanical Anisotropy, Plastic Flow of an AlZnMg Extrusion, Acta Mater., 1996, 44(9), p 3497–3504CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • O. S. Es-Said
    • 1
  • C. J. Parrish
    • 1
  • C. A. Bradberry
    • 1
  • J. Y. Hassoun
    • 1
  • R. A. Parish
    • 1
  • A. Nash
    • 1
  • N. C. Smythe
    • 1
  • K. N. Tran
    • 1
  • T. Ruperto
    • 1
  • E. W. Lee
    • 2
  • D. Mitchell
    • 1
  • C. Vinquist
    • 1
  1. 1.Department of Mechanical EngineeringLoyola Marymount UniversityLos AngelesUSA
  2. 2.Naval Air Warfare CenterPatuxent RiverUSA

Personalised recommendations