Journal of Materials Engineering and Performance

, Volume 20, Issue 7, pp 1097–1108 | Cite as

Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

  • M. Grujicic
  • G. Arakere
  • C.-F. Yen
  • B. A. Cheeseman


A fully coupled thermo-mechanical finite-element analysis of the friction-stir welding (FSW) process developed in our previous work is combined with the basic physical metallurgy of two wrought aluminum alloys to predict/assess their FSW behaviors. The two alloys selected are AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy) and AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure-evolution processes taking place during FSW are extensive plastic deformation and dynamic re-crystallization of highly deformed material subjected to elevated temperatures approaching the melting temperature. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution, and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned microstructure-evolution processes are used to predict variation in the material hardness throughout the various FSW zones of the two alloys. The computed results are found to be in reasonably good agreement with their experimental counterparts.


AA2139 AA5083 finite-element analysis friction-stir welding hardness prediction 



The material presented in this article is based on work supported by the U.S. Army/Clemson University Cooperative Agreements W911NF-04-2-0024 and W911NF-06-2-0042.


  1. 1.
    “Armor Plate, Aluminum Alloy, Weldable 5083 and 5456,” MIL-DTL-46027J, U.S. Department of Defense, Washington DC, August 1992Google Scholar
  2. 2.
    A. Cho, Alcan Rolled Products, Ravenswood, WV, Private Communication, June 2009Google Scholar
  3. 3.
    “Armor Plate, Aluminum Alloy, 7039,” MIL-DTL-46063H, U.S. Department of Defense, Washington DC, December 1992Google Scholar
  4. 4.
    “Aluminum Alloy Armor, 2219, Rolled Plate and Die Forged Shapes,” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, August 1998Google Scholar
  5. 5.
    “Aluminum Alloy Armor Rolled Plate (1/2 to 4 Inches Thick), Weldable (Alloy 2519),” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, February 2000Google Scholar
  6. 6.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991Google Scholar
  7. 7.
    C.J. Dawes and W.M. Thomas, Friction Stir Process Welds Aluminum Alloys, Weld. J., 1996, 75, p 41–52Google Scholar
  8. 8.
    W.M. Thomas and R.E. Dolby, Friction Stir Welding Developments, Proceedings of the Sixth International Trends in Welding Research, S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, and J.M. Vitek, Ed., ASM International, Materials Park, OH, 2003, p 203–211 Google Scholar
  9. 9.
    J.H. Cho, D.E. Boyce, and P.R. Dawson, Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel, Mater. Sci. Eng. A, 2005, 398, p 146–163CrossRefGoogle Scholar
  10. 10.
    H. Liu, H. Fulii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir Welded Joints of 6061-T6 Aluminium Alloy, J. Mater. Sci. Lett., 2003, 22, p 1061–1063CrossRefGoogle Scholar
  11. 11.
    W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59, p 3315–3318CrossRefGoogle Scholar
  12. 12.
    W.M. Thomas and E.D. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18, p 269–273CrossRefGoogle Scholar
  13. 13.
    J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminum, Acta Mater., 2003, 51, p 713–729CrossRefGoogle Scholar
  14. 14.
    O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32, p 1189–1200CrossRefGoogle Scholar
  15. 15.
    M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metall. Mater. Trans. A, 1998, 29, p 1955–1964CrossRefGoogle Scholar
  16. 16.
    C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 1997, 36, p 69–75CrossRefGoogle Scholar
  17. 17.
    G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, and F.R. Vega, Microstructural Aspects of the Friction-Stir-Welding of 6061-T6 Aluminum, Scr. Mater., 1997, 37, p 355–361CrossRefGoogle Scholar
  18. 18.
    K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scr. Mater., 2000, 43, p 743–748CrossRefGoogle Scholar
  19. 19.
    K. Masaki, Y.S. Sato, M. Maeda, and H. Kokawa, Experimental Simulation of Recrystallized Microstructure in Friction Stir Welded Al Alloy Using a Plane-Strain Compression Test, Scr. Mater., 2008, 58, p 355–360CrossRefGoogle Scholar
  20. 20.
    W.M. Thomas, E.D. Nicholas, J.C. NeedHam, M.G. Murch, P. Templesmith, and C. J. Dawes, Friction Stir Welding, International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8, 1991Google Scholar
  21. 21.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50, p 1–78CrossRefGoogle Scholar
  22. 22.
    H.W. Zhang, Z. Zhang, and J.T. Chen, The Finite Element Simulation of the Friction Stir Welding Process, Mater. Sci. Eng. A, 2005, 403, p 340–348CrossRefGoogle Scholar
  23. 23.
    A.J. Ramirez and M.C. Juhas, Microstructural Evolution in Ti-6Al-4V Friction Stir Welds, Mater. Sci. Forum, 2003, 426–432, p 2999–3004CrossRefGoogle Scholar
  24. 24.
    H.G. Salem, A.P. Reynolds, and J.S. Lyons, Microstructure and Retention of Superplasticity of Friction Stir Welded Superplastic 2095 Sheet, Scr. Mater., 2002, 46, p 337–342CrossRefGoogle Scholar
  25. 25.
    H.J. Liu, Y.C. Chen, and J.C. Feng, Effect of Zigzag Line on the Mechanical Properties of Friction Stir Welded Joints of an Al-Cu Alloy, Scr. Mater., 2006, 55, p 231–234CrossRefGoogle Scholar
  26. 26.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Friction Stir Processing on the Microstructure of Cast A356 Aluminum, Mater. Sci. Eng. A, 2006, 433, p 269–278CrossRefGoogle Scholar
  27. 27.
    M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2009, 224(4), p 609–622CrossRefGoogle Scholar
  28. 28.
    M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 14(5), p 672–684CrossRefGoogle Scholar
  29. 29.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B. A. Cheeseman, Development of a Robust and Cost-effective Friction Stir Welding Process for Use in Advanced Military Vehicles, J. Mater. Eng. Perform., 2010. doi: 10.1007/s11665-010-9650-0
  30. 30.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., April 2010, acceptedGoogle Scholar
  31. 31.
    A. Cho and B. Bes, Damage Tolerance Capability of an Al-Cu-Mg-Ag Al2139 Aluminum Alloys, Mater. Sci. Forum, 2006, 519–521, p 603–608CrossRefGoogle Scholar
  32. 32.
    R.J. Chester and I.J. Polmear, “Precipitation in Al-Cu-Mg-Ag Alloys,” The Metallurgy of Light Alloys, The Institution of Metallurgists, London, 1983, p 75–81Google Scholar
  33. 33.
    R.J. Chester and I.J. Polmear, TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys, Micron, 1980, 11, p 311–312Google Scholar
  34. 34.
    I.J. Polmear and R.J. Chester, Abnormal Age Hardening in an Al-Cu-Mg Alloy Containing Silver and Lithium, Scr. Metall., 1989, 23, p 1213–1218CrossRefGoogle Scholar
  35. 35.
    B.M. Gable, G.J. Shiflet et al., The Effect of Si Additions on Omega Precipitation in Al-Cu-Mg-(Ag) Alloys, Scr. Mater., 2004, 50, p 149–153CrossRefGoogle Scholar
  36. 36.
    S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50, p 193–215CrossRefGoogle Scholar
  37. 37.
    L. Del Castillo and E.J. Lavernia, Microstructure and Mechanical Behavior of Spray-Deposited Al-Cu-Mg(-Ag-Mn) Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2000, 31, p 2287–2298CrossRefGoogle Scholar
  38. 38.
    K.M. Knowles and W.M. Stobbs, The Structure of (111) Age-Hardening Precipitates in Al-Cu-Mg-Ag Alloys, Acta Crystallogr. B Struct. Sci., 1988, 44, p 207–227CrossRefGoogle Scholar
  39. 39.
    A.M. Zahra and C.Y. Zahra, Effects of Minor Additions of Mg and Ag on Precipitation Phenomena in Al-4 Mass% Cu, Philos. Mag., 2004, 84, p 2521–2541CrossRefGoogle Scholar
  40. 40.
    O. Beffort, C. Solenthaler et al., Improvement of Strength and Fracture-Toughness of a Spray-Deposited Al-Cu-Mg-Ag-Mn-Ti-Zr Alloy by Optimized Heat-Treatments and Thermomechanical Treatments, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 1995, 191, p 113–120Google Scholar
  41. 41.
    D. Vaughan, Grain Boundary Precipitation in an Al-Cu Alloy, Acta Metall., 1968, 16, p 563–577CrossRefGoogle Scholar
  42. 42.
    W.M. Lee, Dynamic Microstructural Characterization of High Strength Aluminum Alloys, Master’s Thesis, North Carolina State University, 2008Google Scholar
  43. 43.
    K. Hono, N. Sano et al., Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys, Acta Metall. Mater., 1993, 41, p 829–838CrossRefGoogle Scholar
  44. 44.
    S.P. Ringer and K. Hono, Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies, Mater. Charact., 2000, 44, p 101–131CrossRefGoogle Scholar
  45. 45.
    A. Garg, Y.C. Chang et al., Precipitation of the Omega-Phase in an Al-4.0Cu-0.5Mg Alloy, Scr. Metall. Mater., 1990, 24, p 677–680CrossRefGoogle Scholar
  46. 46.
    ABAQUS Version 6.8-1, User Documentation, Dassault Systems, 2008Google Scholar
  47. 47.
    G.R. Johnson and W.H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,” Proceedings of the 7th International Symposium on Ballistics, 1983Google Scholar
  48. 48.
    L.E. Svensson, L. Karlsson, H. Larsson et al., Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Alloys with Special Reference to AA 5083 and AA 6082, Sci. Technol. Weld. Join., 2000, 5, p 285–296CrossRefGoogle Scholar
  49. 49.
    R.E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, MA, 1994Google Scholar
  50. 50.
    Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng., 2003, A354, p 298–305Google Scholar
  51. 51.
    I. Charit and R.S. Mishra, Evaluation of Microstructure and Superplasticity in Friction Stir Processed 5083 Al Alloy, J. Mater. Res., 2004, 19, p 3329–3342CrossRefGoogle Scholar
  52. 52.
    M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman and C. Fountzoulas, Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321, J. Mater. Eng. Perform., 2010. doi: 10.1007/s11665-010-9725-y
  53. 53.
    K. Kannan, J.S. Vetrano, and C.H. Hamilton, Effects of Alloy Modification and Thermomechanical Processing on Recrystallization of Al-Mg-Mn Alloys, Metall. Mater. Trans., 1996, 27A, p 2947–2957CrossRefGoogle Scholar
  54. 54.
    M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801CrossRefGoogle Scholar
  55. 55.
    Y.S. Sato, S. Hwan, C. Park, and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A, 2001, 32A, p 3033–3042CrossRefGoogle Scholar
  56. 56.
    D. Allehaux and F. Marie, Mechanical and Corrosion Behavior of the 2139 Aluminum-Copper-Alloy Welded by the Friction Stir Welding Using the Bobbin Tool Technique, Mater. Sci. Forum, 2006, 519–521, p 1131–1138CrossRefGoogle Scholar
  57. 57.
    L. Fratini, G. Buffa, and D. Palmeri, Using a Neural Network for Predicting the Average Grain-Size in Friction Stir Welding Processes, Comput. Struct., 2009, 87, p 1166–1174CrossRefGoogle Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • M. Grujicic
    • 1
  • G. Arakere
    • 1
  • C.-F. Yen
    • 2
  • B. A. Cheeseman
    • 2
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Army Research Laboratory, Survivability Materials BranchAberdeen, Proving GroundUSA

Personalised recommendations