Journal of Materials Engineering and Performance

, Volume 20, Issue 6, pp 1003–1014

The Effects of Retrogression and Reaging on Aluminum Alloy 2195

  • N. Ward
  • A. Tran
  • A. Abad
  • E. W. Lee
  • M. Hahn
  • E. Fordan
  • O. Es-Said


A retrogression and reaging (RRA) treatment was performed on 2195 Al-Li Alloy. The exposure times were from 5 to 60 min, and the temperatures were from 200 to 250 °C. Samples that were exposed to a salt spray test had overall similar mechanical properties as compared to those that were not exposed. The percent elongation, however, was significantly deteriorated due to the salt spray exposure. The mechanical properties of the 2195 samples were compared to those of 2099 samples exposed to similar treatments in an earlier study.


aluminum lithium alloys retrogression and reaging 2195 and 2099 alloys 


  1. 1.
    B. Cina, Reducing Stress Corrosion Cracking in Aluminum Alloys, U.S. Patent 3,856,584, 24 December 1974Google Scholar
  2. 2.
    R.S. Kaneko, RRA: Solution for Stress Corrosion Problems with T6 Temper Aluminum, Met. Prog., 1980, 117, p 41–43Google Scholar
  3. 3.
    M. Talianker and B. Cina, Retrogression and Reaging and the Role of Dislocations in the Stress Corrosion of 7000-Type Aluminum Alloys, Metall. Trans. A, 1989, 20A, p 2087–2092Google Scholar
  4. 4.
    J.K. Park, Influences of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Cracking Resistance of Aluminum Alloy 7075-T6, Mater. Sci. Eng. A, 1988, 103, p 223–231CrossRefGoogle Scholar
  5. 5.
    J.K. Park and A.J. Ardell, Microstructure of the Commercial 7075 Al Alloy in the T651 and T7 Tempers, Metall. Trans. A, 1983, 14A, p 1957–1965Google Scholar
  6. 6.
    J.K. Park and A.J. Ardell, Effect of Retrogression and Reaging Treatments on the Microstructure of Al-7075-T651, Metall. Trans. A, 1984, 15A, p 1531–1543Google Scholar
  7. 7.
    P. Fleck, D. Calleros, M. Madsen, T. Trinh, D. Hoang, E.W. Lee, J. Foyos, and O.S. Es-Said, Retrogression and Reaging of 7075 T6 Aluminum Alloy, Aluminum Alloys, Their Physical and Mechanical PropertiesProceedings ICAA7, Part 1(Charlottesville, VA), Trans Tech Publications, 2000, p 649–654Google Scholar
  8. 8.
    P. Fleck, K. Koziar, E. Fromer, P. Herbe, G. Davila, M. Lead, J. Foyos, E.W. Lee, and O.S. Es-Said, Retrogression and Reaging of 7249 Plates, Light-Weight Alloys for Aerospace Applications, K.V. Jata, Ed., TMS, Warrendale, PA, 2001, p 99–108Google Scholar
  9. 9.
    P. Fleck, K. Koziar, J. Davila, H. Pech, E. Fromer, M. Leal, J. Foyos, E.W. Lee, and D. Tenney, A Review of the Effect of Retrogression and Reaging on Aluminum Alloy 7249, LiMat3, Center for Advanced Aerospace Materials, Puhang University of Science, Pusan, Korea, 2001, p 559–564Google Scholar
  10. 10.
    J. Na, G. Xiang, and Z. Zi-Qioa, Microstructure Evolution of Aluminum Lithium Alloy 2195 Undergoing Commercial Production, Trans. Nonferrous Met. Soc. China, 2010, 20, p 740–745CrossRefGoogle Scholar
  11. 11.
    J.H. Sanders, Investigation of Grain Boundary Chemistry in Al-Li 2195 Welds using Auger Electron Spectroscopy [J], Thin Solid Films, 1996, 227(1/2), p 121–127Google Scholar
  12. 12.
    M.C. Chatuvedi and D.L. Chen, Effect of Specimen Orientation and Welding on the Fracture and Fatigue Properties of 2195 Al-Li Alloy [J], Mater. Sci. Eng. A, 2004, 389, p 465–469CrossRefGoogle Scholar
  13. 13.
    M.L. Bairwa, S.G. Desai, and P.P. Date, Identification of Heat Treatments for Better Formability in an Aluminum Lithium Alloy Sheet, J. Mater. Eng. Perform., 2005, 14, p 623–633CrossRefGoogle Scholar
  14. 14.
    M. Romios, R. Tiraschi, C. Parrish, H. Babel, J.R. Ogren, and O.S. Es-Said, Design of Multistep Aging Treatments of 2099 (C458) Al-Li Alloy, J. Mater. Eng. Perform., 2005, 14(5), p 641–646CrossRefGoogle Scholar
  15. 15.
    “2195-T8R78 Al-Li Plates” Alcan Aerospace Brochure, April 2010,
  16. 16.
    “ASTM B117” Ascott Analytical Equipment Limited and National Exposure Testing, April 2010,
  17. 17.
    “ASTM E8” Instron Tension Testing of Metallic Materials, April 2010,
  18. 18.
    O.S. Es-Said, W.E. Frazier, and E.W. Lee, The Effect of Retrogression and Re-Aging on the Properties of the 7249 Aluminum Alloys, JOM, 2003, p 45–48Google Scholar
  19. 19.
    N. Ward, A. Tran, A. Abad, E.W. Lee, M. Hahn, E. Fordan, and O.S. Es-Said, The Effects of Retrogression and Reagging on Aluminum Alloy 2099 (C458), J. Mater. Eng. Perform. (Accepted)Google Scholar
  20. 20.
    Registration Record Series, Teal Sheets, May 2010,
  21. 21.
    E.A. Starke, Jr. and C.P. Blankenship, Jr., Aluminum Lithium Alloys, Aluminum-Lithium Alloys for Aerospace Applications, Proceedings of a Workshop, NASA, George Marshall Space Flight Center, Alabama, May 17–19, 1994Google Scholar
  22. 22.
    C. Giummarra, B. Thomas, and R. Rioja, New Aluminum Lithium Alloys for Aerospace Applications, Proceedings of the Light Metals Technology Conference, 2007,
  23. 23.
    N. Aizpuru, D. Le, J. McDonald, L. McLennan, S. Tewfik, E.W. Lee, D. Piatkowski, J. Foyos, J. Ogren, and O.S. Es-Said, The Effects of Flash Annealing on the Mechanical and Electrical Properties of Previously used AM2 Mats Composed of AL 6061-T6, Eng. Fail. Anal. J., 2005, 12, p 691–698CrossRefGoogle Scholar
  24. 24.
    F.S. Bovard, Advanced Aluminum Technologies, NSRP—Product Design & Materials Technology Panel Meeting, Collection of Power Point Presentation Slides, 14 Feb 2008,

Copyright information

© ASM International 2010

Authors and Affiliations

  • N. Ward
    • 1
  • A. Tran
    • 1
  • A. Abad
    • 3
  • E. W. Lee
    • 2
  • M. Hahn
    • 3
  • E. Fordan
    • 3
  • O. Es-Said
    • 1
  1. 1.Mechanical Engineering DepartmentLoyola Marymount UniversityLos AngelesUSA
  2. 2.Naval Air Systems CommandNaval Air WarfarePatuxent RiverUSA
  3. 3.Northrop Grumman Aerospace Systems Air Combat SystemsEl SegundoUSA

Personalised recommendations