Journal of Materials Engineering and Performance

, Volume 20, Issue 7, pp 1206–1218

Innovative Manufacturing Process for Defect Free, Affordable, High Pressure, Thin Walled, Hydraulic Tubing

  • W. Miranda
  • G. Takiguchi
  • T. Shimabukuro
  • L. McLennan
  • C. Agajanian
  • L. Quintero
  • D. Mismar
  • J. Abdulla
  • C. Andrews
  • M. Hahn
  • E. Fodran
  • E. W. Lee
  • H. Garmestani
  • R. D. Conner
  • D. Brick
  • J. Ogren
  • O. S. Es-Said
Article

Abstract

Various thermo-mechanical processes were performed on a standard and a low oxygen content Ti-6Al-4V alloy. Testing was performed to determine whether it was possible to achieve a combination of tensile properties comparable to those of Ti-3Al-2.5V by means of cold working and annealing Ti-6Al-4V from a thickness of 0.671 cm (0.264 in.) to that between 0.081 and 0.094 cm (0.032-0.037 in.), which had never been carried out before. The resulting mechanical properties of this study were compared to the mechanical properties of Ti-3Al-2.5V to determine whether Ti-6Al-4V could be used as a suitable replacement for hydraulic tubing applications. The optimum results were achieved with 10-15% cold work and annealing at 750 °C (1382 °F) for 2 h between cold work reductions in thickness. It was concluded that Ti-6Al-4V was a suitable replacement for Ti-3Al-2.5V for hydraulic tubing with an increase in ultimate and yield strengths, but with a slight sacrifice of 5-10% elongation.

Keywords

cold rolling and annealing optimization of mechanical properties Ti-6Al-4V 

References

  1. 1.
    J.F. Zugschwert, Tiltrotor and Advanced Rotorcraft Technology in the National Airspace System (TARTNAS), 01 Mar 2001, FAA RE&D Committee Vertical Flight Subcommittee, http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/nextgen/research_planning/redac/reports/media/pdf/TARTNAS_Final_Report.pdf 
  2. 2.
    V-22 Osprey, V-22 Osprey, 08 Feb 2006, Globalsecurity.org, http://www.globalsecurity.org/military/systems/aircraft/v-22.htm 
  3. 3.
    USMC Attributes Osprey Crash to Software, Hydraulic Failure, May 2001, Navy League of the United States, http://findarticles.com/p/articles/mi_qa3738/is_200105/ai_n8942867/ 
  4. 4.
    S. Trimble, V-22 Program Grounds Fleet Citing Hydraulic Line Defects, V22 Osprey Web, 10 Mar 2003, Department of the Navy,  http://www.navair.navy.mil/v22/index.cfm?fuseaction=news.detail&id=46 
  5. 5.
    V-22 Osprey Hydraulic System-Report No. D-2002-114(PDF)-Project No. D2001LA- 0124.000, V-22 Osprey Hydraulic System, 24 June 2002, Department of Defense,  http://www.dodig.mil/Audit/reports/fy02/02114sum.htm
  6. 6.
    H. Keeter, Navy Sacks V-22 Hydraulic Tubing Supplier, V22 Osprey Web, 10 Mar 2003, Department of the Navy, http://www.navair.navy.mil/v22/index.cfm?fuseaction=news.detail&id=47
  7. 7.
    Impulse Testing of Hydraulic Tubing and Fittings, S-N Curve, SAE, Aerospace Standard AS4265, 2004, p 1–6Google Scholar
  8. 8.
    ATI Wah Chang Data Sheet, 2008Google Scholar
  9. 9.
    M.J. Donachie, Titanium: ATechnical Guide, 2nd ed., ASM International, 2000, p 1, 159, 160Google Scholar
  10. 10.
    C.E. Forney and S.E. Meredith, Seamless Tubing Engineering Guide, 3rd ed., Sandvik Special Metals Corporation, Washington, 1990, p 5, 16Google Scholar
  11. 11.
    A.L. Helbert, X. Feaugas, and M. Clavel, The Influence of Internal Stresses on the Fracture Toughness of α/β Titanium Alloys, Metall. Mater. Trans. A, 1999, 30, p 2853–2863CrossRefGoogle Scholar
  12. 12.
    O. Strehlau, Introducing Cold Pilger Mill Technology: An Overview of the Equipment and Process, 11 July 2006, TheFabricator.com, http://www.thefabricator.com/article/tubepipeproduction/introducing-cold-pilger-mill-technology 
  13. 13.
    H.R. Salimijazi, T.W. Coyle, and J. Mostaghimi, Vacuum Plasma Spraying: A New Concept for Manufacturing Ti-6Al-4V Structures, JOM, 2006, 90, p 50–56CrossRefGoogle Scholar
  14. 14.
    R. Boyer, G. Welsch, and E.W. Collings, Ed., Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1998, p 3–31Google Scholar
  15. 15.
    J. Kallend, U.F. Kocks, A.D. Rollett, and H.R. Wenk, Operational Texture Analysis, Mater. Sci. Eng. A, 1991, 132, p 1–11CrossRefGoogle Scholar
  16. 16.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York, 1996Google Scholar
  17. 17.
    D.R. Askeland and P.P. Phule, The Science and Engineering of Materials, 5th ed., Thomson Canada Limited, Toronto, 2006, p 521–522Google Scholar
  18. 18.
    J.E. Gordon, Science of Structures and Materials, Scientific American Library, Distributed by Freeman, New York, 1988Google Scholar
  19. 19.
    D.J. Maykuth, Residual Stresses, Stress Relief, and Annealing of Titanium and Titanium Alloys, Defense Metals Information Center, Columbus, OH, 1968Google Scholar

Copyright information

© ASM International 2010

Authors and Affiliations

  • W. Miranda
    • 1
  • G. Takiguchi
    • 1
  • T. Shimabukuro
    • 1
  • L. McLennan
    • 1
  • C. Agajanian
    • 1
  • L. Quintero
    • 1
  • D. Mismar
    • 1
  • J. Abdulla
    • 1
  • C. Andrews
    • 1
  • M. Hahn
    • 2
  • E. Fodran
    • 2
  • E. W. Lee
    • 3
  • H. Garmestani
    • 4
  • R. D. Conner
    • 5
  • D. Brick
    • 6
  • J. Ogren
    • 1
  • O. S. Es-Said
    • 1
  1. 1.Mechanical Engineering DepartmentLoyola Marymount UniversityLos AngelesUSA
  2. 2.Northrop Grumman, Air Combat SystemsEl SegundoUSA
  3. 3.Naval Air Systems CommandNaval Air Warfare CenterPatuxent RiverUSA
  4. 4.Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  5. 5.California State University NorthridgeNorthridgeUSA
  6. 6.Fasteel CorporationAnaheimUSA

Personalised recommendations